2 Find the values of \(A\), \(B\), \(C\) and \(D\) in the identity
$$2 x ^ { 3 } - 3 x ^ { 2 } + x - 2 \equiv ( x + 2 ) \left( A x ^ { 2 } + B x + C \right) + D .$$
The matrix \(\mathbf { S } = \left( \begin{array} { l l } - 1 & 2 - 3 & 4 \end{array} \right)\) represents a transformation.
(A) Show that the point \(( 1,1 )\) is invariant under this transformation.
(B) Calculate \(\mathbf { S } ^ { - 1 }\).
(C) Verify that \(( 1,1 )\) is also invariant under the transformation represented by \(\mathbf { S } ^ { - 1 }\).
Part (i) may be generalised as follows.
If \(( x , y )\) is an invariant point under a transformation represented by the non-singular matrix \(\mathbf { T }\), it is also invariant under the transformation represented by \(\mathbf { T } ^ { - 1 }\).
Starting with \(\mathbf { T } \binom { x } { y } = \binom { x } { y }\), or otherwise, prove this result.
Show that \(r ( r + 1 ) ( r + 2 ) - ( r - 1 ) r ( r + 1 ) \equiv 3 r ( r + 1 )\).
Hence use the method of differences to find an expression for \(\sum _ { r = 1 } ^ { n } r ( r + 1 )\).
Show that you can obtain the same expression for \(\sum _ { r = 1 } ^ { n } r ( r + 1 )\) using the standard formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\).