AQA FP1 (Further Pure Mathematics 1) 2011 January

Question 1
View details
1 The quadratic equation \(x ^ { 2 } - 6 x + 18 = 0\) has roots \(\alpha\) and \(\beta\).
  1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
  2. Find a quadratic equation, with integer coefficients, which has roots \(\alpha ^ { 2 }\) and \(\beta ^ { 2 }\).
  3. Hence find the values of \(\alpha ^ { 2 }\) and \(\beta ^ { 2 }\).
Question 2
View details
2
  1. Find, in terms of \(p\) and \(q\), the value of the integral \(\int _ { p } ^ { q } \frac { 2 } { x ^ { 3 } } \mathrm {~d} x\).
  2. Show that only one of the following improper integrals has a finite value, and find that value:
    1. \(\int _ { 0 } ^ { 2 } \frac { 2 } { x ^ { 3 } } \mathrm {~d} x\);
    2. \(\int _ { 2 } ^ { \infty } \frac { 2 } { x ^ { 3 } } \mathrm {~d} x\).
Question 3
View details
3
  1. Write down the \(2 \times 2\) matrix corresponding to each of the following transformations:
    1. a rotation about the origin through \(90 ^ { \circ }\) clockwise;
    2. a rotation about the origin through \(180 ^ { \circ }\).
  2. The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are defined by $$\mathbf { A } = \left[ \begin{array} { r r } 2 & 4
    - 1 & - 3 \end{array} \right] , \quad \mathbf { B } = \left[ \begin{array} { l l } - 2 & 1
    - 4 & 3 \end{array} \right]$$
    1. Calculate the matrix \(\mathbf { A B }\).
    2. Show that \(( \mathbf { A } + \mathbf { B } ) ^ { 2 } = k \mathbf { I }\), where \(\mathbf { I }\) is the identity matrix, for some integer \(k\).
  3. Describe the single geometrical transformation, or combination of two geometrical transformations, represented by each of the following matrices:
    1. \(\mathbf { A } + \mathbf { B }\);
    2. \(( \mathbf { A } + \mathbf { B } ) ^ { 2 }\);
    3. \(( \mathbf { A } + \mathbf { B } ) ^ { 4 }\).
Question 4
View details
4 Find the general solution of the equation $$\sin \left( 4 x - \frac { 2 \pi } { 3 } \right) = - \frac { 1 } { 2 }$$ giving your answer in terms of \(\pi\).
(6 marks)
Question 5
View details
5
  1. It is given that \(z _ { 1 } = \frac { 1 } { 2 } - \mathrm { i }\).
    1. Calculate the value of \(z _ { 1 } ^ { 2 }\), giving your answer in the form \(a + b \mathrm { i }\).
    2. Hence verify that \(z _ { 1 }\) is a root of the equation $$z ^ { 2 } + z ^ { * } + \frac { 1 } { 4 } = 0$$
  2. Show that \(z _ { 2 } = \frac { 1 } { 2 } + \mathrm { i }\) also satisfies the equation in part (a)(ii).
  3. Show that the equation in part (a)(ii) has two equal real roots.
Question 6
View details
6 The diagram shows a circle \(C\) and a line \(L\), which is the tangent to \(C\) at the point \(( 1,1 )\). The equations of \(C\) and \(L\) are $$x ^ { 2 } + y ^ { 2 } = 2 \text { and } x + y = 2$$ respectively.
\includegraphics[max width=\textwidth, alt={}, center]{a4c5d61d-1af9-449e-b27a-d1e656dcd75a-4_760_1301_552_395} The circle \(C\) is now transformed by a stretch with scale factor 2 parallel to the \(x\)-axis. The image of \(C\) under this stretch is an ellipse \(E\).
  1. On the diagram below, sketch the ellipse \(E\), indicating the coordinates of the points where it intersects the coordinate axes.
  2. Find equations of:
    1. the ellipse \(E\);
    2. the tangent to \(E\) at the point \(( 2,1 )\).
      \includegraphics[max width=\textwidth, alt={}, center]{a4c5d61d-1af9-449e-b27a-d1e656dcd75a-4_743_1301_1921_420}
Question 7
View details
7 A graph has equation $$y = \frac { x - 4 } { x ^ { 2 } + 9 }$$
  1. Explain why the graph has no vertical asymptote and give the equation of the horizontal asymptote.
  2. Show that, if the line \(y = k\) intersects the graph, the \(x\)-coordinates of the points of intersection of the line with the graph must satisfy the equation $$k x ^ { 2 } - x + ( 9 k + 4 ) = 0$$
  3. Show that this equation has real roots if \(- \frac { 1 } { 2 } \leqslant k \leqslant \frac { 1 } { 18 }\).
  4. Hence find the coordinates of the two stationary points on the curve.
    (No credit will be given for methods involving differentiation.)
Question 8
View details
8
  1. The equation $$x ^ { 3 } + 2 x ^ { 2 } + x - 100000 = 0$$ has one real root. Taking \(x _ { 1 } = 50\) as a first approximation to this root, use the Newton-Raphson method to find a second approximation, \(x _ { 2 }\), to the root.
    1. Given that \(S _ { n } = \sum _ { r = 1 } ^ { n } r ( 3 r + 1 )\), use the formulae for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that $$S _ { n } = n ( n + 1 ) ^ { 2 }$$
    2. The lowest integer \(n\) for which \(S _ { n } > 100000\) is denoted by \(N\). Show that $$N ^ { 3 } + 2 N ^ { 2 } + N - 100000 > 0$$
  2. Find the value of \(N\), justifying your answer.