AQA FP1 (Further Pure Mathematics 1) 2006 January

Question 1
View details
1
  1. Show that the equation $$x ^ { 3 } + 2 x - 2 = 0$$ has a root between 0.5 and 1 .
  2. Use linear interpolation once to find an estimate of this root. Give your answer to two decimal places.
Question 2
View details
2
  1. For each of the following improper integrals, find the value of the integral or explain briefly why it does not have a value:
    1. \(\int _ { 0 } ^ { 9 } \frac { 1 } { \sqrt { x } } \mathrm {~d} x\);
    2. \(\int _ { 0 } ^ { 9 } \frac { 1 } { x \sqrt { x } } \mathrm {~d} x\).
  2. Explain briefly why the integrals in part (a) are improper integrals.
Question 3
View details
3 Find the general solution, in degrees, for the equation $$\sin \left( 4 x + 10 ^ { \circ } \right) = \sin 50 ^ { \circ }$$
Question 4
View details
4 A curve has equation $$y = \frac { 6 x } { x - 1 }$$
  1. Write down the equations of the two asymptotes to the curve.
  2. Sketch the curve and the two asymptotes.
  3. Solve the inequality $$\frac { 6 x } { x - 1 } < 3$$
Question 5
View details
5
    1. Calculate \(( 2 + \mathrm { i } \sqrt { 5 } ) ( \sqrt { 5 } - \mathrm { i } )\).
    2. Hence verify that \(\sqrt { 5 } - \mathrm { i }\) is a root of the equation $$( 2 + \mathrm { i } \sqrt { 5 } ) z = 3 z ^ { * }$$ where \(z ^ { * }\) is the conjugate of \(z\).
  1. The quadratic equation $$x ^ { 2 } + p x + q = 0$$ in which the coefficients \(p\) and \(q\) are real, has a complex root \(\sqrt { 5 } - \mathrm { i }\).
    1. Write down the other root of the equation.
    2. Find the sum and product of the two roots of the equation.
    3. Hence state the values of \(p\) and \(q\).
Question 6
View details
6 [Figure 1 and Figure 2, printed on the insert, are provided for use in this question.]
The variables \(x\) and \(y\) are known to be related by an equation of the form $$y = k x ^ { n }$$ where \(k\) and \(n\) are constants.
Experimental evidence has provided the following approximate values:
\(x\)417150300
\(y\)1.85.03050
  1. Complete the table in Figure 1, showing values of \(X\) and \(Y\), where $$X = \log _ { 10 } x \quad \text { and } \quad Y = \log _ { 10 } y$$ Give each value to two decimal places.
  2. Show that if \(y = k x ^ { n }\), then \(X\) and \(Y\) must satisfy an equation of the form $$Y = a X + b$$
  3. Draw on Figure 2 a linear graph relating \(X\) and \(Y\).
  4. Find an estimate for the value of \(n\).
Question 7
View details
7
  1. The transformation T is defined by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left[ \begin{array} { r r } 0 & - 1
    - 1 & 0 \end{array} \right]$$
    1. Describe the transformation T geometrically.
    2. Calculate the matrix product \(\mathbf { A } ^ { 2 }\).
    3. Explain briefly why the transformation T followed by T is the identity transformation.
  2. The matrix \(\mathbf { B }\) is defined by $$\mathbf { B } = \left[ \begin{array} { l l } 1 & 1
    0 & 1 \end{array} \right]$$
    1. Calculate \(\mathbf { B } ^ { 2 } - \mathbf { A } ^ { 2 }\).
    2. Calculate \(( \mathbf { B } + \mathbf { A } ) ( \mathbf { B } - \mathbf { A } )\).
Question 8
View details
8 A curve has equation \(y ^ { 2 } = 12 x\).
  1. Sketch the curve.
    1. The curve is translated by 2 units in the positive \(y\) direction. Write down the equation of the curve after this translation.
    2. The original curve is reflected in the line \(y = x\). Write down the equation of the curve after this reflection.
    1. Show that if the straight line \(y = x + c\), where \(c\) is a constant, intersects the curve \(y ^ { 2 } = 12 x\), then the \(x\)-coordinates of the points of intersection satisfy the equation $$x ^ { 2 } + ( 2 c - 12 ) x + c ^ { 2 } = 0$$
    2. Hence find the value of \(c\) for which the straight line is a tangent to the curve.
    3. Using this value of \(c\), find the coordinates of the point where the line touches the curve.
    4. In the case where \(c = 4\), determine whether the line intersects the curve or not.