CAIE P1 (Pure Mathematics 1) 2007 June

Question 1
View details
1 Find the value of the constant \(c\) for which the line \(y = 2 x + c\) is a tangent to the curve \(y ^ { 2 } = 4 x\).
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{b24ed4c7-ab07-45f4-adf2-027734c36b62-2_633_787_402_680} The diagram shows the curve \(y = 3 x ^ { \frac { 1 } { 4 } }\). The shaded region is bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 4\). Find the volume of the solid obtained when this shaded region is rotated completely about the \(x\)-axis, giving your answer in terms of \(\pi\).
Question 3
View details
3 Prove the identity \(\frac { 1 - \tan ^ { 2 } x } { 1 + \tan ^ { 2 } x } \equiv 1 - 2 \sin ^ { 2 } x\).
Question 4
View details
4 Find the real roots of the equation \(\frac { 18 } { x ^ { 4 } } + \frac { 1 } { x ^ { 2 } } = 4\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{b24ed4c7-ab07-45f4-adf2-027734c36b62-2_586_682_1726_733} In the diagram, \(O A B\) is a sector of a circle with centre \(O\) and radius 12 cm . The lines \(A X\) and \(B X\) are tangents to the circle at \(A\) and \(B\) respectively. Angle \(A O B = \frac { 1 } { 3 } \pi\) radians.
  1. Find the exact length of \(A X\), giving your answer in terms of \(\sqrt { } 3\).
  2. Find the area of the shaded region, giving your answer in terms of \(\pi\) and \(\sqrt { } 3\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{b24ed4c7-ab07-45f4-adf2-027734c36b62-3_593_878_269_635} The diagram shows a rectangle \(A B C D\). The point \(A\) is \(( 2,14 ) , B\) is \(( - 2,8 )\) and \(C\) lies on the \(x\)-axis. Find
  1. the equation of \(B C\),
  2. the coordinates of \(C\) and \(D\).
Question 7
View details
7 The second term of a geometric progression is 3 and the sum to infinity is 12 .
  1. Find the first term of the progression. An arithmetic progression has the same first and second terms as the geometric progression.
  2. Find the sum of the first 20 terms of the arithmetic progression.
Question 8
View details
8 The function f is defined by \(\mathrm { f } ( x ) = a + b \cos 2 x\), for \(0 \leqslant x \leqslant \pi\). It is given that \(\mathrm { f } ( 0 ) = - 1\) and \(\mathrm { f } \left( \frac { 1 } { 2 } \pi \right) = 7\).
  1. Find the values of \(a\) and \(b\).
  2. Find the \(x\)-coordinates of the points where the curve \(y = \mathrm { f } ( x )\) intersects the \(x\)-axis.
  3. Sketch the graph of \(y = \mathrm { f } ( x )\).
Question 9
View details
9 Relative to an origin \(O\), the position vectors of the points \(A\) and \(B\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } 4
1
- 2 \end{array} \right) \quad \text { and } \quad \overrightarrow { O B } = \left( \begin{array} { r } 3
2
- 4 \end{array} \right) .$$
  1. Given that \(C\) is the point such that \(\overrightarrow { A C } = 2 \overrightarrow { A B }\), find the unit vector in the direction of \(\overrightarrow { O C }\). The position vector of the point \(D\) is given by \(\overrightarrow { O D } = \left( \begin{array} { l } 1
    4
    k \end{array} \right)\), where \(k\) is a constant, and it is given that \(\overrightarrow { O D } = m \overrightarrow { O A } + n \overrightarrow { O B }\), where \(m\) and \(n\) are constants.
  2. Find the values of \(m , n\) and \(k\).
Question 10
View details
10 The equation of a curve is \(y = 2 x + \frac { 8 } { x ^ { 2 } }\).
  1. Obtain expressions for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Find the coordinates of the stationary point on the curve and determine the nature of the stationary point.
  3. Show that the normal to the curve at the point \(( - 2 , - 2 )\) intersects the \(x\)-axis at the point \(( - 10,0 )\).
  4. Find the area of the region enclosed by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 2\).
Question 11
View details
11
\includegraphics[max width=\textwidth, alt={}, center]{b24ed4c7-ab07-45f4-adf2-027734c36b62-4_862_892_932_628} The diagram shows the graph of \(y = \mathrm { f } ( x )\), where \(\mathrm { f } : x \mapsto \frac { 6 } { 2 x + 3 }\) for \(x \geqslant 0\).
  1. Find an expression, in terms of \(x\), for \(\mathrm { f } ^ { \prime } ( x )\) and explain how your answer shows that f is a decreasing function.
  2. Find an expression, in terms of \(x\), for \(\mathrm { f } ^ { - 1 } ( x )\) and find the domain of \(\mathrm { f } ^ { - 1 }\).
  3. Copy the diagram and, on your copy, sketch the graph of \(y = \mathrm { f } ^ { - 1 } ( x )\), making clear the relationship between the graphs. The function g is defined by \(\mathrm { g } : x \mapsto \frac { 1 } { 2 } x\) for \(x \geqslant 0\).
  4. Solve the equation \(\operatorname { fg } ( x ) = \frac { 3 } { 2 }\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }