3 A uniform rigid rod AB of length \(2 a\) and mass \(m\) is smoothly hinged to a fixed point at A so that it can rotate freely in a vertical plane. A light elastic string of modulus \(\lambda\) and natural length \(a\) connects the midpoint of AB to a fixed point C which is vertically above A with \(\mathrm { AC } = a\). The rod makes an angle \(2 \theta\) with the upward vertical, where \(\frac { 1 } { 3 } \pi \leqslant 2 \theta \leqslant \pi\). This is shown in Fig. 3.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c4d3b482-5d09-4128-891d-4499fa49670c-3_339_563_534_737}
\captionsetup{labelformat=empty}
\caption{Fig. 3}
\end{figure}
- Find the potential energy, \(V\), of the system relative to A in terms of \(m , \lambda , a\) and \(\theta\). Show that
$$\frac { \mathrm { d } V } { \mathrm {~d} \theta } = 2 a \cos \theta ( 2 \lambda \sin \theta - 2 m g \sin \theta - \lambda ) .$$
Assume now that the system is set up so that the result (*) continues to hold when \(\pi < 2 \theta \leqslant \frac { 5 } { 3 } \pi\).
- In the case \(\lambda < 2 m g\), show that there is a stable position of equilibrium at \(\theta = \frac { 1 } { 2 } \pi\). Show that there are no other positions of equilibrium in this case.
- In the case \(\lambda > 2 m g\), find the positions of equilibrium for \(\frac { 1 } { 3 } \pi \leqslant 2 \theta \leqslant \frac { 5 } { 3 } \pi\) and determine for each whether the equilibrium is stable or unstable, justifying your conclusions.