6
\includegraphics[max width=\textwidth, alt={}, center]{ab760a4b-e0ec-4256-838f-ed6c762ff18b-3_716_483_890_790}
Two small smooth pegs \(P\) and \(Q\) are fixed at a distance \(2 a\) apart on the same horizontal level, and \(A\) is the mid-point of \(P Q\). A light rod \(A B\) of length \(4 a\) is freely pivoted at \(A\) and can rotate in the vertical plane containing \(P Q\), with \(B\) below the level of \(P Q\). A particle of mass \(m\) is attached to the rod at \(B\). A light elastic string, of natural length \(2 a\) and modulus of elasticity \(\lambda\), passes round the pegs \(P\) and \(Q\) and its two ends are attached to the rod at the point \(X\), where \(A X = a\). The angle between the rod and the downward vertical is \(\theta\), where \(- \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi\) (see diagram). You are given that the elastic energy stored in the string is \(\lambda a ( 1 + \cos \theta )\).
- Show that \(\theta = 0\) is a position of equilibrium, and show that the equilibrium is stable if \(\lambda < 4 m g\).
- Given that \(\lambda = 3 m g\), show that \(\ddot { \theta } = - k \frac { g } { a } \sin \theta\), stating the value of the constant \(k\). Hence find the approximate period of small oscillations of the system about the equilibrium position \(\theta = 0\).