3
\includegraphics[max width=\textwidth, alt={}, center]{afecdb38-c372-480a-9d6d-fafe6a371dc2-2_664_623_904_760}
A uniform circular disc has mass \(4 m\), radius \(2 a\) and centre \(O\). The points \(A\) and \(B\) are at opposite ends of a diameter of the disc, and the mid-point of \(O A\) is \(P\). A particle of mass \(m\) is attached to the disc at \(B\). The resulting compound pendulum is in a vertical plane and is free to rotate about a fixed horizontal axis passing through \(P\) and perpendicular to the disc (see diagram). The pendulum makes small oscillations.
- Find the moment of inertia of the pendulum about the axis.
- Find the approximate period of the small oscillations.