OCR M4 (Mechanics 4) 2002 January

Question 1
View details
1 A wheel rotating about a fixed axis is slowing down with constant angular deceleration. Initially the angular speed is \(24 \mathrm { rad } \mathrm { s } ^ { - 1 }\). In the first 5 seconds the wheel turns through 96 radians.
  1. Find the angular deceleration.
  2. Find the total angle the wheel turns through before coming to rest.
Question 2
View details
2 A uniform solid of revolution is formed by rotating the region bounded by the \(x\)-axis, the line \(x = 1\) and the curve \(y = x ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), about the \(x\)-axis. The units are metres, and the density of the solid is \(5400 \mathrm {~kg} \mathrm {~m} ^ { - 3 }\). Find the moment of inertia of this solid about the \(x\)-axis.
Question 3
View details
3 A uniform rectangular lamina \(A B C D\) of mass 0.6 kg has sides \(A B = 0.4 \mathrm {~m}\) and \(A D = 0.3 \mathrm {~m}\). The lamina is free to rotate about a fixed horizontal axis which passes through \(A\) and is perpendicular to the lamina.
  1. Find the moment of inertia of the lamina about the axis.
  2. Find the approximate period of small oscillations in a vertical plane.
Question 4
View details
4 A uniform circular disc has mass \(m\), radius \(a\) and centre \(C\). The disc is free to rotate in a vertical plane about a fixed horizontal axis passing through a point \(A\) on the disc, where \(C A = \frac { 1 } { 3 } a\).
  1. Find the moment of inertia of the disc about this axis. The disc is released from rest with \(C A\) horizontal.
  2. Find the initial angular acceleration of the disc.
  3. State the direction of the force acting on the disc at \(A\) immediately after release, and find its magnitude.
Question 5
View details
5 The region bounded by the \(x\)-axis, the \(y\)-axis, the line \(x = \ln 5\) and the curve \(y = \mathrm { e } ^ { x }\) for \(0 \leqslant x \leqslant \ln 5\), is occupied by a uniform lamina.
  1. Show that the centre of mass of this lamina has \(x\)-coordinate $$\frac { 5 } { 4 } \ln 5 - 1$$
  2. Find the \(y\)-coordinate of the centre of mass.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{98647526-b52a-4316-9a09-48d756b8f599-3_117_913_251_630} An arm on a fairground ride is modelled as a uniform rod \(A B\), of mass 75 kg and length 7.2 m , with a particle of mass 124 kg attached at \(B\). The arm can rotate about a fixed horizontal axis perpendicular to the rod and passing through the point \(P\) on the rod, where \(A P = 1.2 \mathrm {~m}\).
  1. Show that the moment of inertia of the arm about the axis is \(5220 \mathrm {~kg} \mathrm {~m} ^ { 2 }\).
  2. The arm is released from rest with \(A B\) horizontal, and a frictional couple of constant moment 850 N m opposes the motion. Find the angular speed of the arm when \(B\) is first vertically below \(P\).
Question 7
View details
7 At midnight, ship \(A\) is 70 km due north of ship \(B\). Ship \(A\) travels with constant velocity \(20 \mathrm {~km} \mathrm {~h} ^ { - 1 }\) in the direction with bearing \(140 ^ { \circ }\). Ship \(B\) travels with constant velocity \(15 \mathrm {~km} \mathrm {~h} ^ { - 1 }\) in the direction with bearing \(025 ^ { \circ }\).
  1. Find the magnitude and direction of the velocity of \(A\) relative to \(B\).
  2. Find the distance between the ships when they are at their closest, and find the time when this occurs.
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{98647526-b52a-4316-9a09-48d756b8f599-3_493_748_1393_708} The diagram shows a uniform rod \(A B\), of mass \(m\) and length \(2 a\), free to rotate in a vertical plane about a fixed horizontal axis through \(A\). A light elastic string has natural length \(a\) and modulus of elasticity \(\frac { 1 } { 2 } m g\). The string joins \(B\) to a light ring \(R\) which slides along a smooth horizontal wire fixed at a height \(a\) above \(A\) and in the same vertical plane as \(A B\). The string \(B R\) remains vertical. The angle between \(A B\) and the horizontal is denoted by \(\theta\), where \(0 < \theta < \pi\).
  1. Taking the reference level for gravitational potential energy to be the horizontal through \(A\), show that the total potential energy of the system is $$m g a \left( \sin ^ { 2 } \theta - \sin \theta \right) .$$
  2. Find the three values of \(\theta\) for which the system is in equilibrium.
  3. For each position of equilibrium, determine whether it is stable or unstable.