Edexcel M4 (Mechanics 4) 2016 June

Question 1
View details
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b01b3a41-3ed1-4104-b20d-4cfb845df4a1-02_476_835_121_552} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A smooth uniform sphere \(A\) of mass \(m\) is moving on a smooth horizontal plane when it collides with a second smooth uniform sphere \(B\), which is at rest on the plane. The sphere \(B\) has mass \(4 m\) and the same radius as \(A\). Immediately before the collision the direction of motion of \(A\) makes an angle \(\alpha\) with the line of centres of the spheres, as shown in Figure 1. The direction of motion of \(A\) is turned through an angle of \(90 ^ { \circ }\) by the collision and the coefficient of restitution between the spheres is \(\frac { 1 } { 2 }\) Find the value of \(\tan \alpha\).
1.
VIIIV SIHI NI IIIIM I I O N OAVIIV SIHI NI IIIHM ION OOVI4V SIHI NI JIIIM IONOO
Question 2
View details
2. Figure 2 A small spherical ball \(P\) is at rest at the point \(A\) on a smooth horizontal floor. The ball is struck and travels along the floor until it hits a fixed smooth vertical wall at the point \(X\). The angle between \(A X\) and this wall is \(\alpha\), where \(\alpha\) is acute. A second fixed smooth vertical wall is perpendicular to the first wall and meets it in a vertical line through the point \(C\) on the floor. The ball rebounds from the first wall and hits the second wall at the point \(Y\). After \(P\) rebounds from the second wall, \(P\) is travelling in a direction parallel to \(X A\), as shown in Figure 2. The coefficient of restitution between the ball and the first wall is \(e\). The coefficient of restitution between the ball and the second wall is ke. Find the value of \(k\).
2.
\includegraphics[max width=\textwidth, alt={}, center]{b01b3a41-3ed1-4104-b20d-4cfb845df4a1-03_582_645_118_648}
Question 3
View details
3. Two straight horizontal roads cross at right angles at the point \(X\). A girl is running, with constant speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), due north towards \(X\) on one road. A car is travelling, with constant speed \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), due west towards \(X\) on the other road.
  1. Find the magnitude and direction of the velocity of the car relative to the girl, giving the direction as a bearing.
    (6) At noon the girl is 150 m south of \(X\) and the car is 800 m east of \(X\).
  2. Find the shortest distance between the car and the girl during the subsequent motion.
Question 4
View details
4. A particle \(P\) of mass 9 kg moves along the horizontal positive \(x\)-axis under the action of a force directed towards the origin. At time \(t\) seconds, the displacement of \(P\) from \(O\) is \(x\) metres, \(P\) is moving with speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the force has magnitude \(16 x\) newtons. The particle \(P\) is also subject to a resistive force of magnitude \(24 v\) newtons.
  1. Show that the equation of motion of \(P\) is $$9 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 24 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 16 x = 0$$ It is given that the general solution of this differential equation is $$x = \mathrm { e } ^ { - \frac { 4 } { 3 } t } ( A t + B )$$ where \(A\) and \(B\) are arbitrary constants.
    When \(t = \frac { 3 } { 4 } , P\) is travelling towards \(O\) with its maximum speed of \(8 \mathrm { e } ^ { - 1 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(x = d\).
  2. Find the value of \(d\).
  3. Find the value of \(x\) when \(t = 0\)
Question 5
View details
5. A toy car of mass 0.5 kg is attached to one end \(A\) of a light elastic string \(A B\), of natural length 1.5 m and modulus of elasticity 27 N . Initially the car is at rest on a smooth horizontal floor and the string lies in a straight line with \(A B = 1.5 \mathrm {~m}\). The end \(B\) is moved in a straight horizontal line directly away from the car, with constant speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\). At time \(t\) seconds after \(B\) starts to move, the extension of the string is \(x\) metres and the car has moved a distance \(y\) metres. The effect of air resistance on the car can be ignored. By modelling the car as a particle, show that, while the string remains taut,
    1. \(x + y = u t\)
    2. \(\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 36 x = 0\)
  1. Hence show that the string becomes slack when \(t = \frac { \pi } { 6 }\)
  2. Find, in terms of \(u\), the speed of the car when \(t = \frac { \pi } { 12 }\)
  3. Find, in terms of \(u\), the distance the car has travelled when it first reaches end \(B\) of the string.
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b01b3a41-3ed1-4104-b20d-4cfb845df4a1-11_664_786_221_587} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a uniform rod \(A B\), of length \(2 l\) and mass \(4 m\). A particle of mass \(2 m\) is attached to the rod at \(B\). The rod can turn freely in a vertical plane about a fixed smooth horizontal axis through \(A\). One end of a light elastic spring, of natural length \(2 l\) and modulus of elasticity \(k m g\), where \(k > 4\), is attached to the rod at \(B\). The other end of the spring is attached to a fixed point \(C\) which is vertically above \(A\), where \(A C = 2 l\). The angle \(B A C\) is \(2 \theta\), where \(\frac { \pi } { 6 } < \theta \leqslant \frac { \pi } { 2 }\)
  1. Show that the potential energy of the system is $$4 m g l \left\{ ( k - 4 ) \sin ^ { 2 } \theta - k \sin \theta \right\} + \text { constant }$$ Given that there is a position of equilibrium with \(\theta \neq \frac { \pi } { 2 }\)
  2. show that \(k > 8\) Given that \(k = 10\)
  3. determine the stability of this position of equilibrium.