4 The region \(A\) is bounded by the curve \(y = x ^ { 2 } + 5\) for \(0 \leqslant x \leqslant 3\), the \(x\)-axis, the \(y\)-axis and the line \(x = 3\). The region \(B\) is bounded by the curve \(y = x ^ { 2 } + 5\) for \(0 \leqslant x \leqslant 3\), the \(y\)-axis and the line \(y = 14\). These regions are shown in Fig. 4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5ecb198d-7863-4fc2-81b6-c8b6c37b1859-5_883_554_431_794}
\captionsetup{labelformat=empty}
\caption{Fig. 4}
\end{figure}
- Find the coordinates of the centre of mass of a uniform lamina occupying the region \(A\).
- The region \(B\) is rotated through \(2 \pi\) radians about the \(y\)-axis to form a uniform solid of revolution \(R\). Find the \(y\)-coordinate of the centre of mass of the solid \(R\).
- The region \(A\) is rotated through \(2 \pi\) radians about the \(y\)-axis to form a uniform solid of revolution \(S\). Using your answer to part (ii), or otherwise, find the \(y\)-coordinate of the centre of mass of the solid \(S\).