3 A particle P of mass 0.6 kg is connected to a fixed point O by a light inextensible string of length 1.25 m . When it is 1.25 m vertically below \(\mathrm { O } , \mathrm { P }\) is set in motion with horizontal velocity \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and then moves in part of a vertical circle with centre O and radius 1.25 m . When OP makes an angle \(\theta\) with the downward vertical, the speed of P is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), as shown in Fig. 3.1.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{023afdfb-21b6-40fe-9a09-e6769667ee7b-3_602_627_484_758}
\captionsetup{labelformat=empty}
\caption{Fig. 3.1}
\end{figure}
- Show that \(v ^ { 2 } = 11.5 + 24.5 \cos \theta\).
- Find the tension in the string in terms of \(\theta\).
- Find the speed of P at the instant when the string becomes slack.
A second light inextensible string, of length 0.35 m , is attached to P , and the other end of this string is attached to a point C which is 1.2 m vertically below O . The particle P now moves in a horizontal circle with centre C and radius 0.35 m , as shown in Fig. 3.2. The speed of P is \(1.4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{023afdfb-21b6-40fe-9a09-e6769667ee7b-3_518_488_1701_826}
\captionsetup{labelformat=empty}
\caption{Fig. 3.2}
\end{figure} - Find the tension in the string OP and the tension in the string CP.