7. (a) Show that the centre of mass of a uniform solid hemisphere of radius \(r\) is at a distance \(\frac { 3 r } { 8 }\) from the centre \(O\) of the plane face.
The figure shows the vertical cross-section of a rough solid hemisphere at rest on a rough inclined plane inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = \frac { 3 } { 10 }\).
(b) Indicate on a copy of the figure the three forces acting on the hemisphere, clearly stating what they are, and paying
\includegraphics[max width=\textwidth, alt={}, center]{e756c147-2711-4ee4-9ec6-7680fe84a0c5-2_356_520_2042_1457}
(c) Given that the plane face containing the diameter \(A B\) makes an angle \(\alpha\) with the vertical, show that \(\cos \alpha = \frac { 4 } { 5 }\).