OCR MEI M2 (Mechanics 2) 2007 June

Question 2
View details
2 The position of the centre of mass, \(G\), of a uniform wire bent into the shape of an arc of a circle of radius \(r\) and centre C is shown in Fig. 2.1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d4aeab2-332a-442f-b1e7-0bbf8a945f0f-3_325_1132_365_669} \captionsetup{labelformat=empty} \caption{Fig. 2.1}
\end{figure}
  1. Use this information to show that the centre of mass, G , of the uniform wire bent into the shape of a semi-circular arc of radius 8 shown in Fig. 2.2 has coordinates \(\left( - \frac { 16 } { \pi } , 8 \right)\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d4aeab2-332a-442f-b1e7-0bbf8a945f0f-3_586_871_1016_806} \captionsetup{labelformat=empty} \caption{Fig. 2.2}
    \end{figure} A walking-stick is modelled as a uniform rigid wire. The walking-stick and coordinate axes are shown in Fig. 2.3. The section from O to A is a semi-circular arc and the section OB lies along the \(x\)-axis. The lengths are in centimetres. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d4aeab2-332a-442f-b1e7-0bbf8a945f0f-3_394_958_1937_552} \captionsetup{labelformat=empty} \caption{Fig. 2.3}
    \end{figure}
  2. Show that the coordinates of the centre of mass of the walking-stick are ( \(25.37,2.07\) ), correct to two decimal places. The walking-stick is now hung from a shelf as shown in Fig. 2.4. The only contact between the walking-stick and the shelf is at A . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d4aeab2-332a-442f-b1e7-0bbf8a945f0f-4_339_374_388_842} \captionsetup{labelformat=empty} \caption{Fig. 2.4}
    \end{figure}
  3. When the walking-stick is in equilibrium, OB is at an angle \(\alpha\) to the vertical. Draw a diagram showing the position of the centre of mass of the walking-stick in relation to A .
    Calculate \(\alpha\).
  4. The walking-stick is now held in equilibrium, with OB vertical and A still resting on the shelf, by means of a vertical force, \(F \mathrm {~N}\), at B . The weight of the walking-stick is 12 N . Calculate \(F\).
Question 3
View details
3 A uniform plank is 2.8 m long and has weight 200 N . The centre of mass is G.
  1. Fig. 3.1 shows the plank horizontal and in equilibrium, resting on supports at A and B . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d4aeab2-332a-442f-b1e7-0bbf8a945f0f-5_229_1125_434_459} \captionsetup{labelformat=empty} \caption{Fig. 3.1}
    \end{figure} Calculate the reactions of the supports on the plank at A and at B .
  2. Fig. 3.2 shows the plank horizontal and in equilibrium between a support at C and a peg at D . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d4aeab2-332a-442f-b1e7-0bbf8a945f0f-5_236_1141_993_461} \captionsetup{labelformat=empty} \caption{Fig. 3.2}
    \end{figure} Calculate the reactions of the support and the peg on the plank at C and at D , showing the directions of these forces on a diagram. Fig. 3.3 shows the plank in equilibrium between a support at P and a peg at Q . The plank is inclined at \(\alpha\) to the horizontal, where \(\sin \alpha = 0.28\) and \(\cos \alpha = 0.96\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d4aeab2-332a-442f-b1e7-0bbf8a945f0f-5_424_1099_1692_475} \captionsetup{labelformat=empty} \caption{Fig. 3.3}
    \end{figure}
  3. Calculate the normal reactions at P and at Q .
  4. Just one of the contacts is rough. Determine which one it is if the value of the coefficient of friction is as small as possible. Find this value of the coefficient of friction.
Question 4
View details
4 Jack and Jill are raising a pail of water vertically using a light inextensible rope. The pail and water have total mass 20 kg . In parts (i) and (ii), all non-gravitational resistances to motion may be neglected.
  1. How much work is done to raise the pail from rest so that it is travelling upwards at \(0.5 \mathrm {~ms} ^ { - 1 }\) when at a distance of 4 m above its starting position?
  2. What power is required to raise the pail at a steady speed of \(0.5 \mathrm {~ms} ^ { - 1 }\) ? Jack falls over and hurts himself. He then slides down a hill.
    His mass is 35 kg and his speed increases from \(1 \mathrm {~ms} ^ { - 1 }\) to \(3 \mathrm {~ms} ^ { - 1 }\) while descending through a vertical height of 3 m .
  3. How much work is done against friction? In Jack's further motion, he slides down a slope at an angle \(\alpha\) to the horizontal where \(\sin \alpha = 0.1\). The frictional force on him is now constant at 150 N . For this part of the motion, Jack's initial speed is \(3 \mathrm {~ms} ^ { - 1 }\).
  4. How much further does he slide before coming to rest?