OCR MEI M2 (Mechanics 2)

Question 1
View details
1
  1. Roger of mass 70 kg and Sheuli of mass 50 kg are skating on a horizontal plane containing the standard unit vectors \(\mathbf { i }\) and \(\mathbf { j }\). The resistances to the motion of the skaters are negligible. The two skaters are locked in a close embrace and accelerate from rest until they reach a velocity of \(2 \mathrm { ims } ^ { - 1 }\), as shown in Fig. 1.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5dd6ba0d-e516-4b9e-ba19-6e90520b171b-002_191_181_543_740} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5dd6ba0d-e516-4b9e-ba19-6e90520b171b-002_177_359_589_1051} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure}
    1. What impulse has acted on them? During a dance routine, the skaters separate on three occasions from their close embrace when travelling at a constant velocity of \(2 \mathrm { i } \mathrm { ms } ^ { - 1 }\).
    2. Calculate the velocity of Sheuli after the separation in the following cases.
      (A) Roger has velocity \(\mathrm { ims } ^ { - 1 }\) after the separation.
      (B) Roger and Sheuli have equal speeds in opposite senses after the separation, with Roger moving in the \(\mathbf { i }\) direction.
      (C) Roger has velocity \(4 ( \mathbf { i } + \mathbf { j } ) \mathrm { ms } ^ { - 1 }\) after the separation.
  2. Two discs with masses 2 kg and 3 kg collide directly in a horizontal plane. Their velocities just before the collision are shown in Fig. 1.2. The coefficient of restitution in the collision is 0.5. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5dd6ba0d-e516-4b9e-ba19-6e90520b171b-002_278_970_1759_594} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
    \end{figure}
    1. Calculate the velocity of each disc after the collision. The disc of mass 3 kg moves freely after the collision and makes a perfectly elastic collision with a smooth wall inclined at \(60 ^ { \circ }\) to its direction of motion, as shown in Fig. 1.2.
    2. State with reasons the speed of the disc and the angle between its direction of motion and the wall after the collision.
Question 3
View details
3 Fig. 3.1 shows an object made up as follows. ABCD is a uniform lamina of mass \(16 \mathrm {~kg} . \mathrm { BE } , \mathrm { EF }\), FG, HI, IJ and JD are each uniform rods of mass 2 kg . ABCD, BEFG and HIJD are squares lying in the same plane. The dimensions in metres are shown in the figure. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5dd6ba0d-e516-4b9e-ba19-6e90520b171b-004_627_648_429_735} \captionsetup{labelformat=empty} \caption{Fig. 3.1}
\end{figure}
  1. Find the coordinates of the centre of mass of the object, referred to the axes shown in Fig.3.1. The rods are now re-positioned so that BEFG and HIJD are perpendicular to the lamina, as shown in Fig. 3.2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5dd6ba0d-e516-4b9e-ba19-6e90520b171b-004_442_666_1510_722} \captionsetup{labelformat=empty} \caption{Fig. 3.2}
    \end{figure}
  2. Find the \(x\)-, \(y\)-and \(z\)-coordinates of the centre of mass of the object, referred to the axes shown in Fig. 3.2. Calculate the distance of the centre of mass from A . The object is now freely suspended from A and hangs in equilibrium with AC at \(\alpha ^ { \circ }\) to the vertical.
  3. Calculate \(\alpha\).