OCR M2 (Mechanics 2) 2009 January

Question 1
View details
1 A stone is projected from a point on level ground with speed \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of elevation of \(\theta ^ { \circ }\) above the horizontal. When the stone is at its greatest height it just passes over the top of a tree that is 17 m high. Calculate \(\theta\).
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{dd23f4a8-f7e7-4f80-bad6-7e9ec21565fc-2_465_643_495_749} A uniform right-angled triangular lamina \(A B C\) with sides \(A B = 12 \mathrm {~cm} , B C = 9 \mathrm {~cm}\) and \(A C = 15 \mathrm {~cm}\) is freely suspended from a hinge at its vertex \(A\). The lamina has mass 2 kg and is held in equilibrium with \(A B\) horizontal by means of a string attached to \(B\). The string is at an angle of \(30 ^ { \circ }\) to the horizontal (see diagram). Calculate the tension in the string.
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{dd23f4a8-f7e7-4f80-bad6-7e9ec21565fc-2_828_476_1338_836} A door is modelled as a lamina \(A B C D E\) consisting of a uniform rectangular section \(A B D E\) of weight 60 N and a uniform semicircular section \(B C D\) of weight 10 N and radius \(40 \mathrm {~cm} . A B\) is 200 cm and \(A E\) is 80 cm . The door is freely hinged at \(F\) and \(G\), where \(G\) is 30 cm below \(B\) and \(F\) is 30 cm above \(A\) (see diagram).
  1. Find the magnitudes and directions of the horizontal components of the forces on the door at each of \(F\) and \(G\).
  2. Calculate the distance from \(A E\) to the centre of mass of the door.
Question 4
View details
4 A car of mass 800 kg experiences a resistance of magnitude \(k v ^ { 2 } \mathrm {~N}\), where \(k\) is a constant and \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the car's speed. The car's engine is working at a constant rate of \(P \mathrm {~W}\). At an instant when the car is travelling on a horizontal road with speed \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) its acceleration is \(0.75 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). At an instant when the car is ascending a hill of constant slope \(12 ^ { \circ }\) to the horizontal with speed \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) its acceleration is \(0.25 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Show that \(k = 0.900\), correct to 3 decimal places, and find \(P\). The power is increased to \(1.5 P \mathrm {~W}\).
  2. Calculate the maximum steady speed of the car on a horizontal road.
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{dd23f4a8-f7e7-4f80-bad6-7e9ec21565fc-3_729_739_868_703} A particle \(P\) of mass 0.2 kg is attached to one end of each of two light inextensible strings, one of length 0.4 m and one of length 0.3 m . The other end of the longer string is attached to a fixed point \(A\), and the other end of the shorter string is attached to a fixed point \(B\), which is vertically below \(A\). The particle moves in a horizontal circle of radius 0.24 m at a constant angular speed of \(8 \mathrm { rad } \mathrm { s } ^ { - 1 }\) (see diagram). Both strings are taut, the tension in \(A P\) is \(S \mathrm {~N}\) and the tension in \(B P\) is \(T \mathrm {~N}\).
  1. By resolving vertically, show that \(4 S = 3 T + 9.8\).
  2. Find another equation connecting \(S\) and \(T\) and hence calculate the tensions, correct to 1 decimal place. \section*{[Questions 6 and 7 are printed overleaf.]}
Question 6
View details
6 A particle is projected from a point \(O\) with speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of elevation \(\theta\) above the horizontal and it moves freely under gravity. The horizontal and upward vertical displacements of the particle from \(O\) at any subsequent time, \(t\) seconds, are \(x \mathrm {~m}\) and \(y \mathrm {~m}\) respectively.
  1. Express \(x\) and \(y\) in terms of \(\theta\) and \(t\), and hence show that $$y = x \tan \theta - \frac { 4.9 x ^ { 2 } } { v ^ { 2 } \cos ^ { 2 } \theta } .$$
    \includegraphics[max width=\textwidth, alt={}]{dd23f4a8-f7e7-4f80-bad6-7e9ec21565fc-4_551_575_667_826}
    The particle subsequently passes through the point \(A\) with coordinates \(( h , - h )\) as shown in the diagram. It is given that \(v = 14\) and \(\theta = 30 ^ { \circ }\).
  2. Calculate \(h\).
  3. Calculate the direction of motion of the particle at \(A\).
  4. Calculate the speed of the particle at \(A\).
    \includegraphics[max width=\textwidth, alt={}, center]{dd23f4a8-f7e7-4f80-bad6-7e9ec21565fc-4_278_1061_1749_543} Two small spheres, \(P\) and \(Q\), are free to move on the inside of a smooth hollow cylinder, in such a way that they remain in contact with both the curved surface and the base of the cylinder. The mass of \(P\) is 0.2 kg , the mass of \(Q\) is 0.3 kg and the radius of the cylinder is \(0.4 \mathrm {~m} . P\) and \(Q\) are stationary at opposite ends of a diameter of the base of the cylinder (see diagram). The coefficient of restitution between \(P\) and \(Q\) is \(0.5 . P\) is given an impulse of magnitude 0.8 Ns in a tangential direction.
  5. Calculate the speeds of the particles after \(P\) 's first impact with \(Q\).
    \(Q\) subsequently catches up with \(P\) and there is a second impact.
  6. Calculate the speeds of the particles after this second impact.
  7. Calculate the magnitude of the force exerted on \(Q\) by the curved surface of the cylinder after the second impact.