OCR MEI M1 (Mechanics 1)

Question 1
View details
1 A particle rests on a smooth, horizontal plane. Horizontal unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) lie in this plane. The particle is in equilibrium under the action of the three forces \(( - 3 \mathbf { i } + 4 \mathbf { j } ) \mathrm { N }\) and \(( 21 \mathbf { i } - 7 \mathbf { j } ) \mathrm { N }\) and \(\mathbf { R N }\).
  1. Write down an expression for \(\mathbf { R }\) in terms of \(\mathbf { i }\) and \(\mathbf { j }\).
  2. Find the magnitude of \(\mathbf { R }\) and the angle between \(\mathbf { R }\) and the \(\mathbf { i }\) direction.
Question 2
View details
2 The position vector of a particle at time \(t\) is given by $$\mathbf { r } = \frac { 1 } { 2 } t \mathbf { i } + \left( t ^ { 2 } - 1 \right) \mathbf { j } .$$ referred to an origin \(O\) where \(\mathbf { i }\) and \(\mathbf { j }\) are the standard unit vectors in the directions of the cartesian axes Ox and Oy respectively.
  1. Write down the value of \(t\) for which the \(x\)-coordinate of the position of the particle is 2 . Find the \(y\)-coordinate at this time.
  2. Show that the cartesian equation of the path of the particle is \(y = 4 x ^ { 2 } - 1\).
  3. Find the coordinates of the point where the particle is moving at \(45 ^ { \circ }\) to both Ox and Oy .
Question 3
View details
3 The vectors \(\mathbf { p }\) and \(\mathbf { q }\) are given by $$\mathbf { p } = 8 \mathbf { i } + \mathbf { j } \text { and } \mathbf { q } = 4 \mathbf { i } - 7 \mathbf { j } .$$
  1. Show that \(\mathbf { p }\) and \(\mathbf { q }\) are equal in magnitude.
  2. Show that \(\mathbf { p } + \mathbf { q }\) is parallel to \(2 \mathbf { i } - \mathbf { j }\).
  3. Draw \(\mathbf { p } + \mathbf { q }\) and \(\mathbf { p } - \mathbf { q }\) on the grid. Write down the angle between these two vectors.
Question 4
View details
4 In this question, \(\mathbf { i }\) is a horizontal unit vector and \(\mathbf { j }\) is a unit vector pointing vertically upwards.
A force \(\mathbf { F }\) is \(- \mathbf { i } + 5 \mathbf { j }\).
  1. Calculate the magnitude of \(\mathbf { F }\). Calculate also the angle between \(\mathbf { F }\) and the upward vertical. Force \(\mathbf { G }\) is \(2 a \mathbf { i } + a \mathbf { j }\) and force \(\mathbf { H }\) is \(- 2 \mathbf { i } + 3 b \mathbf { j }\), where \(a\) and \(b\) are constants. The force \(\mathbf { H }\) is the resultant of forces \(4 \mathbf { F }\) and \(\mathbf { G }\).
  2. Find \(\mathbf { G }\) and \(\mathbf { H }\).
Question 5
View details
5 The resultant of the force \(\binom { - 4 } { 8 } \mathrm {~N}\) and the force \(\mathbf { F }\) gives an object of mass 6 kg an acceleration of \(\binom { 2 } { 3 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Calculate \(\mathbf { F }\).
  2. Calculate the angle between \(\mathbf { F }\) and the vector \(\binom { 0 } { 1 }\).
Question 6
View details
6 The force acting on a particle of mass 1.5 kg is given by the vector \(\binom { 6 } { 9 } \mathrm {~N}\).
  1. Give the acceleration of the particle as a vector.
  2. Calculate the angle that the acceleration makes with the direction \(\binom { 1 } { 0 }\).
  3. At a certain point of its motion, the particle has a velocity of \(\binom { - 2 } { 3 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Calculate the displacement of the particle over the next two seconds.
Question 7
View details
7 A force \(\mathbf { F }\) is given by \(\mathbf { F } = ( 3.5 \mathbf { i } + 12 \mathbf { j } ) \mathrm { N }\), where \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal unit vectors east and north respectively.
  1. Calculate the magnitude of \(\mathbf { F }\) and also its direction as a bearing.
  2. \(\mathbf { G }\) is the force \(( 7 \mathbf { i } + 24 \mathbf { j } ) \mathrm { N }\). Show that \(\mathbf { G }\) and \(\mathbf { F }\) are in the same direction and compare their magnitudes.
  3. Force \(\mathbf { F } _ { 1 }\) is \(( 9 \mathbf { i } - 18 \mathbf { j } ) \mathrm { N }\) and force \(\mathbf { F } _ { 2 }\) is \(( 12 \mathbf { i } + q \mathbf { j } ) \mathrm { N }\). Find \(q\) so that the sum \(\mathbf { F } _ { 1 } + \mathbf { F } _ { 2 }\) is in the direction of \(\mathbf { F }\).