OCR MEI M1 (Mechanics 1)

Question 1
View details
1 The vectors \(\mathbf { P } , \mathbf { Q }\) and \(\mathbf { R }\) are given by $$\mathbf { P } = 5 \mathbf { i } + 4 \mathbf { j } , \quad \mathbf { Q } = 3 \mathbf { i } - 5 \mathbf { j } , \quad \mathbf { R } = - 8 \mathbf { i } + \mathbf { j }$$
  1. Find the vector \(\mathbf { P } + \mathbf { Q } + \mathbf { R }\).
  2. Interpret your answer to part (i) in the cases
    (A) \(\mathbf { P } , \mathbf { Q }\) and \(\mathbf { R }\) represent three forces acting on a particle,
    (B) \(\mathbf { P } , \mathbf { Q }\) and \(\mathbf { R }\) represent three stages of a hiker's walk.
Question 2
View details
2 The vectors \(\mathbf { P } , \mathbf { Q }\) and \(\mathbf { R }\) are given by $$\mathbf { P } = 5 \mathbf { i } + 4 \mathbf { j } , \quad \mathbf { Q } = 3 \mathbf { i } - 5 \mathbf { j } , \quad \mathbf { R } = - 8 \mathbf { i } + \mathbf { j }$$
  1. Find the vector \(\mathbf { P } + \mathbf { Q } + \mathbf { R }\).
  2. Interpret your answer to part (i) in the cases
    (A) \(\mathbf { P } , \mathbf { Q }\) and \(\mathbf { R }\) represent three forces acting on a particle,
    (B) \(\mathbf { P } , \mathbf { Q }\) and \(\mathbf { R }\) represent three stages of a hiker's walk.
Question 3
View details
3 In this question the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are pointing east and north respectively.
  1. Calculate the bearing of the vector \(- 4 \mathbf { i } - 6 \mathbf { j }\). The vector \(- 4 \mathbf { i } - 6 \mathbf { j } + k ( 3 \mathbf { i } - 2 \mathbf { j } )\) is in the direction \(7 \mathbf { i } - 9 \mathbf { j }\).
  2. Find \(k\).
Question 4
View details
4 A small box has weight \(\mathbf { W } \mathrm { N }\) and is held in equilibrium by two strings with tensions \(\mathbf { T } _ { 1 } \mathrm {~N}\) and \(\mathbf { T } _ { 2 } \mathrm {~N}\). This situation is shown in Fig. 2 which also shows the standard unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) that are horizontal and vertically upwards, respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b80eced6-2fea-4b95-9104-d13339643df0-2_252_631_414_803} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} The tension \(\mathbf { T } _ { 1 }\) is \(10 \mathbf { i } + 24 \mathbf { j }\).
  1. Calculate the magnitude of \(\mathbf { T } _ { 1 }\) and the angle between \(\mathbf { T } _ { 1 }\) and the vertical. The magnitude of the weight is \(w \mathrm {~N}\).
  2. Write down the vector \(\mathbf { W }\) in terms of \(w\) and \(\mathbf { j }\). The tension \(\mathbf { T } _ { 2 }\) is \(k \mathbf { i } + 10 \mathbf { j }\), where \(k\) is a scalar.
  3. Find the values of \(k\) and of \(w\).
Question 5
View details
5 A particle has a position vector \(\mathbf { r }\), where \(\mathbf { r } = 4 \mathbf { i } - 5 \mathbf { j }\) and \(\mathbf { i }\) and \(\mathbf { j }\) are unit vectors in the directions east and north respectively.
  1. Sketch \(\mathbf { r }\) on a diagram showing \(\mathbf { i }\) and \(\mathbf { j }\) and the origin O .
  2. Calculate the magnitude of \(\mathbf { r }\) and its direction as a bearing.
  3. Write down the vector that has the same direction as \(\mathbf { r }\) and three times its magnitude.
Question 6
View details
6 Force \(\mathbf { F } _ { 1 }\) is \(\binom { 6 } { 13 } \mathrm {~N}\) and force \(\mathbf { F } _ { 2 }\) is \(\binom { 3 } { 5 }\), where \(\left. \int _ { 0 } \right] _ { \text {and } } \binom { 0 } { 1 }\) are vectors east and north respectively.
  1. Calculate the magnitude of \(\mathbf { F } _ { 1 }\), correct to three significant figures.
  2. Calculate the direction of the force \(\mathbf { F } _ { 1 } - \mathbf { F } _ { 2 }\) as a bearing. Force \(\mathbf { F } _ { 2 }\) is the resultant of all the forces acting on an object of mass 5 kg .
  3. Calculate the acceleration of the object and the change in its velocity after 10 seconds.