OCR MEI M1 (Mechanics 1)

Question 1
View details
1 A ring is moving up and down a vertical pole. The displacement, \(s \mathrm {~m}\), of the ring above a mark on the pole is modelled by the displacement-time graph shown in Fig. 1. The three sections of the graph are straight lines. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bdbebc7f-0cb1-4203-8058-7614ba291508-1_763_1057_439_580} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Calculate the velocity of the ring in the interval \(0 < t < 2\) and in the interval \(2 < t < 3.5\).
  2. Sketch a velocity-time graph for the motion of the ring during the 4 seconds.
  3. State the direction of motion of the ring when
    (A) \(t = 1\),
    (B) \(t = 2.75\),
    (C) \(t = 3.25\).
Question 2
View details
2 Fig. 2 shows an acceleration-time graph modelling the motion of a particle. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bdbebc7f-0cb1-4203-8058-7614ba291508-2_684_1068_408_586} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} At \(t = 0\) the particle has a velocity of \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the positive direction.
  1. Find the velocity of the particle when \(t = 2\).
  2. At what time is the particle travelling in the negative direction with a speed of \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) ?
Question 3
View details
3 A cyclist starts from rest and takes 10 seconds to accelerate at a constant rate up to a speed of \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). After travelling at this speed for 20 seconds, the cyclist then decelerates to rest at a constant rate over the next 5 seconds.
  1. Sketch a velocity-time graph for the motion.
  2. Calculate the distance travelled by the cyclist.
Question 4
View details
4 Fig. 1 is the velocity-time graph for the motion of a body. The velocity of the body is \(v \mathrm {~m} \mathrm {~s} { } ^ { 1 }\) at time \(t\) seconds. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bdbebc7f-0cb1-4203-8058-7614ba291508-3_656_1344_401_399} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} The displacement of the body from \(t = 0\) to \(t = 100\) is 1400 m . Find the value of \(V\).