7 The curve \(C\) has equation \(\mathrm { y } = \frac { 4 \mathrm { x } + 5 } { 4 - 4 \mathrm { x } ^ { 2 } }\).
- Find the equations of the asymptotes of \(C\).
- Find the coordinates of any stationary points on \(C\).
- Sketch \(C\), stating the coordinates of the intersections with the axes.
- Sketch the curve with equation \(y = \left| \frac { 4 x + 5 } { 4 - 4 x ^ { 2 } } \right|\) and find in exact form the set of values of \(x\) for which \(4 | 4 x + 5 | > 5 \left| 4 - 4 x ^ { 2 } \right|\).
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.