OCR MEI M1 (Mechanics 1)

Question 1
View details
1 The velocity of a model boat, \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { 1 }\), is given by $$\mathbf { v } = \binom { 5 } { 10 } + t \binom { 6 } { 8 }$$ where \(t\) is the time in seconds and the vectors \(\binom { 1 } { 0 }\) and \(\binom { 0 } { 1 }\) are east and north respectively.
  1. Show that when \(t = 2.5\) the boat is travelling south-east (i.e. on a bearing of \(135 ^ { \circ }\) ). Calculate its speed at this time. The boat is at a point O when \(t = 0\).
  2. Calculate the bearing of the boat from O when \(t = 2.5\).
Question 2
View details
2 The acceleration of a particle of mass 4 kg is given by \(\mathbf { a } = ( 9 \mathbf { i } - 4 t \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { 2 }\), where \(\mathbf { i }\) and \(\mathbf { j }\) are unit vectors and \(t\) is the time in seconds.
  1. Find the acceleration of the particle when \(t = 0\) and also when \(t = 3\).
  2. Calculate the force acting on the particle when \(t = 3\). The particle has velocity \(( 4 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } { } ^ { 1 }\) when \(t = 1\).
  3. Find an expression for the velocity of the particle at time \(t\).
Question 3
View details
3 The position vector, \(r\), of a particle of mass 4 kg at time \(t\) is given by $$\mathbf { r } = t ^ { 2 } \mathbf { i } + \left( 5 t - 2 t ^ { 2 } \right) \mathbf { j }$$ where \(\mathbf { i }\) and \(\mathbf { j }\) are the standard unit vectors, lengths are in metres and time is in seconds.
  1. Find an expression for the acceleration of the particle. The particle is subject to a force \(\mathbf { F }\) and a force \(12 \mathbf { j } \mathbf { N }\).
  2. Find \(\mathbf { F }\).
Question 4
View details
4 A ring is moving on a straight wire. Its velocity is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at time \(t\) seconds after passing a point Q .
Model A for the motion of the ring gives the velocity-time graph for \(0 \leqslant t \leqslant 6\) shown in Fig. 7 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{196bd74f-c2b2-4cb3-b03c-8ecd9fce9c11-2_937_1414_325_404} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} Use model A to calculate the following.
  1. The acceleration of the ring when \(t = 0.5\).
  2. The displacement of the ring from Q when
    (A) \(t = 2\),
    (B) \(t = 6\). In an alternative model B , the velocity of the ring is given by \(v = 2 t ^ { 2 } - 14 t + 20\) for \(0 \leqslant t \leqslant 6\).
  3. Calculate the acceleration of the ring at \(t = 0.5\) as given by model B.
  4. Calculate by how much the models differ in their values for the least \(v\) in the time interval \(0 \leqslant t \leqslant 6\).
  5. Calculate the displacement of the ring from Q when \(t = 6\) as given by model B .