OCR MEI M1 (Mechanics 1)

Question 1
View details
1 In this question take \(\boldsymbol { g } = \mathbf { 1 0 }\).
The directions of the unit vectors \(\left( \begin{array} { l } 1
0
0 \end{array} \right) , \left( \begin{array} { l } 0
1
0 \end{array} \right)\) and \(\left( \begin{array} { l } 0
0
1 \end{array} \right)\) are east, north and vertically upwards.
Forces \(\mathbf { p } , \mathbf { q }\) and \(\mathbf { r }\) are given by \(\mathbf { p } = \left( \begin{array} { r } - 1
- 1
5 \end{array} \right) \mathrm { N } , \mathbf { q } = \left( \begin{array} { r } - 1
- 4
2 \end{array} \right) \mathrm { N }\) and \(\mathbf { r } = \left( \begin{array} { l } 2
5
0 \end{array} \right) \mathrm { N }\).
  1. Find which of \(\mathbf { p } , \mathbf { q }\) and \(\mathbf { r }\) has the greatest magnitude.
  2. A particle has mass 0.4 kg . The forces acting on it are \(\mathbf { p } , \mathbf { q } , \mathbf { r }\) and its weight. Find the magnitude of the particle's acceleration and describe the direction of this acceleration.
Question 2 6 marks
View details
2 The directions of the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are east and north.
The velocity of a particle, \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\), at time \(t \mathrm {~s}\) is given by $$\mathbf { v } = \left( 16 - t ^ { 2 } \right) \mathbf { i } + ( 31 - 8 t ) \mathbf { j }$$ Find the time at which the particle is travelling on a bearing of \(045 ^ { \circ }\) and the speed of the particle at this time.
[0pt] [6]
Question 3
View details
3 A football is kicked with speed \(31 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(20 ^ { \circ }\) to the horizontal. It travels towards the goal which is 50 m away. The height of the crossbar of the goal is 2.44 m .
  1. Does the ball go over the top of the crossbar? Justify your answer.
  2. State one assumption that you made in answering part (i).
Question 4
View details
4 The three forces \(\left. \begin{array} { r } - 1
14
- 8 \end{array} \right) \mathrm { N } , \left( \begin{array} { r } 3
- 9
10 \end{array} \right) \mathrm { N }\) and \(\mathbf { F } \mathrm { N }\) act on a body of mass 4 kg in deep space and give it an acceleration of \(\left. \quad \begin{array} { r } - 1
2
4 \end{array} \right) \mathrm { m } \mathrm { s } ^ { - 2 }\).
  1. Calculate \(\mathbf { F }\). At one instant the velocity of the body is \(\left. \begin{array} { r } - 3
    3
    6 \end{array} \right) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  2. Calculate the velocity and also the speed of the body 3 seconds later.
Question 5
View details
5 The position vector of a toy boat of mass 1.5 kg is modelled as \(\mathbf { r } = ( 2 + t ) \mathbf { i } + \left( 3 t - t ^ { 2 } \right) \mathbf { j }\) where lengths are in metres, \(t\) is the time in seconds, \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal, perpendicular unit vectors and the origin is O .
  1. Find the velocity of the boat when \(t = 4\).
  2. Find the acceleration of the boat and the horizontal force acting on the boat.
  3. Find the cartesian equation of the path of the boat referred to \(x\) - and \(y\)-axes in the directions of \(\mathbf { i }\) and \(\mathbf { j }\), respectively, with origin O . You are not required to simplify your answer.
Question 6
View details
6 An object of mass 5 kg has a constant acceleration of \(\binom { - 1 } { 2 } \mathrm {~ms} ^ { - 2 }\) for \(0 \leqslant t \leqslant 4\), where \(t\) is the time in seconds.
  1. Calculate the force acting on the object. When \(t = 0\), the object has position vector \(\binom { - 2 } { 3 } \mathrm {~m}\) and velocity \(\binom { 4 } { 5 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find the position vector of the object when \(t = 4\).
Question 7
View details
7 An object of mass 5 kg has a constant acceleration of \(\binom { - 1 } { 2 } \mathrm {~ms} ^ { - 2 }\) for \(0 \leqslant t \leqslant 4\), where \(t\) is the time in seconds.
  1. Calculate the force acting on the object. When \(t = 0\), the object has position vector \(\binom { - 2 } { 3 } \mathrm {~m}\) and velocity \(\binom { 4 } { 5 } \mathrm {~ms} ^ { - 1 }\).
  2. Find the position vector of the object when \(t = 4\).