OCR MEI M1 (Mechanics 1)

Question 2
View details
2 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{34e4ce80-21b0-48f5-865c-de4dd837f7c5-1_98_836_1073_718} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure} A toy car is moving along the straight line \(\mathrm { O } x\), where O is the origin. The time \(t\) is in seconds. At time \(t = 0\) the car is at \(\mathrm { A } , 3 \mathrm {~m}\) from O as shown in Fig. 5. The velocity of the car, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is given by $$v = 2 + 12 t - 3 t ^ { 2 }$$ Calculate the distance of the car from O when its acceleration is zero.
Question 3
View details
3 A particle moves along a straight line containing a point O . Its displacement, \(x \mathrm {~m}\), from O at time \(t\) seconds is given by $$x = 12 t - t ^ { 3 } , \text { where } - 10 \leqslant t \leqslant 10$$ Find the values of \(x\) for which the velocity of the particle is zero.
Question 4
View details
4 A point P on a piece of machinery is moving in a vertical straight line. The displacement of P above ground level at time \(t\) seconds is \(y\) metres. The displacement-time graph for the motion during the time interval \(0 \leqslant t \leqslant 4\) is shown in Fig. 7 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{34e4ce80-21b0-48f5-865c-de4dd837f7c5-3_1027_1333_372_435} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Using the graph, determine for the time interval \(0 \leqslant t \leqslant 4\)
    (A) the greatest displacement of P above its position when \(t = 0\),
    (B) the greatest distance of P from its position when \(t = 0\),
    (C) the time interval in which P is moving downwards,
    (D) the times when P is instantaneously at rest. The displacement of P in the time interval \(0 \leqslant t \leqslant 3\) is given by \(y = - 4 t ^ { 2 } + 8 t + 12\).
  2. Use calculus to find expressions in terms of \(t\) for the velocity and for the acceleration of P in the interval \(0 \leqslant t \leqslant 3\).
  3. At what times does P have a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the interval \(0 \leqslant t \leqslant 3\) ? In the time interval \(3 \leqslant t \leqslant 4 , \mathrm { P }\) has a constant acceleration of \(32 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). There is no sudden change in velocity when \(t = 3\).
  4. Find an expression in terms of \(t\) for the displacement of P in the interval \(3 \leqslant t \leqslant 4\).
Question 5
View details
5 Fig. 3 is a sketch of the velocity-time graph modelling the velocity of a sprinter at the start of a race. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{34e4ce80-21b0-48f5-865c-de4dd837f7c5-4_581_1085_453_567} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. How can you tell from the sketch that the acceleration is not modelled as being constant for \(0 \leqslant t \leqslant 4\) ? The velocity of the sprinter, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), for the time interval \(0 \leqslant t \leqslant 4\) is modelled by the expression $$v = 3 t - \frac { 3 } { 8 } t ^ { 2 } .$$
  2. Find the acceleration that the model predicts for \(t = 4\) and comment on what this suggests about the running of the sprinter.
  3. Calculate the distance run by the sprinter from \(t = 1\) to \(t = 4\).
Question 6
View details
6 Fig. 7 is a sketch of part of the velocity-time graph for the motion of an insect walking in a straight line. Its velocity, \(v \mathrm {~m} \mathrm {~s} { } ^ { 1 }\), at time \(t\) seconds for the time interval \(- 3 \leqslant t \leqslant 5\) is given by $$v = t ^ { 2 } - 2 t - 8 .$$ \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{34e4ce80-21b0-48f5-865c-de4dd837f7c5-5_624_886_549_631} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the velocity of the insect when \(t = 0\).
  2. Show that the insect is instantaneously at rest when \(t = - 2\) and when \(t = 4\).
  3. Determine the velocity of the insect when its acceleration is zero. Write down the coordinates of the point A shown in Fig. 7.
  4. Calculate the distance travelled by the insect from \(t = 1\) to \(t = 4\).
  5. Write down the distance travelled by the insect in the time interval \(- 2 \leqslant t \leqslant 4\).
  6. How far does the insect walk in the time interval \(1 \leqslant t \leqslant 5\) ?