2 A bus route runs from the centre of town A through the town's urban area to a point B on its boundary and then through the country to a small town C . Because of traffic congestion and general road conditions, delays occur on both the urban and the country sections. All delays may be considered independent.
The scheduled time for the journey from A to B is 24 minutes. In fact, journey times over this section are given by the Normally distributed random variable \(X\) with mean 26 minutes and standard deviation 3 minutes.
The scheduled time for the journey from B to C is 18 minutes. In fact, journey times over this section are given by the Normally distributed random variable \(Y\) with mean 15 minutes and standard deviation 2 minutes.
Journey times on the two sections of route may be considered independent. The timetable published to the public does not show details of times at intermediate points; thus, if a bus is running early, it merely continues on its journey and is not required to wait.
- Find the probability that a journey from A to B is completed in less than the scheduled time of 24 minutes.
- Find the probability that a journey from A to C is completed in less than the scheduled time of 42 minutes.
- It is proposed to introduce a system of bus lanes in the urban area. It is believed that this would mean that the journey time from A to B would be given by the random variable \(0.85 X\). Assuming this to be the case, find the probability that a journey from A to B would be completed in less than the currently scheduled time of 24 minutes.
- An alternative proposal is to introduce an express service. This would leave out some bus stops on both sections of the route and its overall journey time from A to C would be given by the random variable \(0.9 X + 0.8 Y\). The scheduled time from A to C is to be given as a whole number of minutes. Find the least possible scheduled time such that, with probability 0.75 , buses would complete the journey on time or early.
- A programme of minor road improvements is undertaken on the country section. After their completion, it is thought that the random variable giving the journey time from B to C is still Normally distributed with standard deviation 2 minutes. A random sample of 15 journeys is found to have a sample mean journey time from B to C of 13.4 minutes. Provide a two-sided \(95 \%\) confidence interval for the population mean journey time from B to C .