OCR MEI S2 (Statistics 2) 2015 June

Question 1
View details
1 A random sample of wheat seedlings is planted and their growth is measured. The table shows their average growth, \(y \mathrm {~mm}\), at half-day intervals.
Time \(t\) days00.511.522.53
Average growth \(y \mathrm {~mm}\)072133455662
  1. Draw a scatter diagram to illustrate these data.
  2. Calculate the equation of the regression line of \(y\) on \(t\).
  3. Calculate the value of the residual for the data point at which \(t = 2\).
  4. Use the equation of the regression line to calculate an estimate of the average growth after 5 days for wheat seedlings. Comment on the reliability of this estimate. It is suggested that it would be better to replace the regression line by a line which passes through the origin. You are given that the equation of such a line is \(y = a t\), where \(a = \frac { \sum y t } { \sum t ^ { 2 } }\).
  5. Find the equation of this line and plot the line on your scatter diagram.
Question 2
View details
2 It was stated in 2012 that \(3 \%\) of \(\pounds 1\) coins were fakes. Throughout this question, you should assume that this is still the case.
  1. Find the probability that, in a random selection of \(25 \pounds 1\) coins, there is exactly one fake coin. A random sample of \(250 \pounds 1\) coins is selected.
  2. Explain why a Poisson distribution is an appropriate approximating distribution for the number of fake coins in the sample.
  3. Use a Poisson distribution to find the probability that, in this sample, there are
    (A) exactly 10 fake coins,
    (B) at least 10 fake coins.
  4. Use a suitable approximating distribution to find the probability that there are at least 50 fake coins in a sample of 2000 coins. It is known that \(0.2 \%\) of another type of coin are fakes.
  5. A random sample of size \(n\) of these coins is taken. Using a Poisson approximating distribution, show that the probability of at most one fake coin in the sample is equal to \(\mathrm { e } ^ { - \lambda } + \lambda \mathrm { e } ^ { - \lambda }\), where \(\lambda = 0.002 n\).
  6. Use the approximation \(\mathrm { e } ^ { - \lambda } + \lambda \mathrm { e } ^ { - \lambda } \approx 1 - \frac { \lambda ^ { 2 } } { 2 }\) for small values of \(\lambda\) to estimate the value of \(n\) for which the probability in part ( \(\mathbf { v }\) ) is equal to 0.995 .
Question 3
View details
3 The random variable \(X\) represents the weight in kg of a randomly selected male dog of a particular breed. \(X\) is Normally distributed with mean 30.7 and standard deviation 3.5.
  1. Find
    (A) \(\mathrm { P } ( X < 30 )\),
    (B) \(P ( 25 < X < 35 )\).
  2. Five of these dogs are chosen at random. Find the probability that each of them weighs at least 30 kg .
  3. The weights of females of the same breed of dog are Normally distributed with mean 26.8 kg . Given that \(5 \%\) of female dogs of this breed weigh more than 30 kg , find the standard deviation of their weights.
  4. Sketch the distributions of the weights of male and female dogs of this breed on a single diagram.
Question 4
View details
4
  1. As part of an investigation into smoking, a random sample of 120 students was selected. The students were asked whether they were smokers, and also whether either of their parents were smokers. The results are summarised in the table below. Test, at the \(5 \%\) significance level, whether there is any association between the smoking habits of the students and their parents.
    At least one
    parent smokes
    Neither parent
    smokes
    Student smokes2127
    Student does not smoke1755
  2. The manufacturer of a particular brand of cigarette claims that the nicotine content of these cigarettes is Normally distributed with mean 0.87 mg . A researcher suspects that the mean nicotine content of this brand is higher than the value claimed by the manufacturer. The nicotine content, \(x \mathrm { mg }\), is measured for a random sample of 100 cigarettes. The data are summarised as follows. $$\sum x = 88.20 \quad \sum x ^ { 2 } = 78.68$$ Carry out a test at the \(1 \%\) significance level to investigate the researcher's belief. \section*{END OF QUESTION PAPER}