OCR MEI S2 (Statistics 2) 2005 June

Question 1
View details
1 A student is collecting data on traffic arriving at a motorway service station during weekday lunchtimes. The random variable \(X\) denotes the number of cars arriving in a randomly chosen period of ten seconds.
  1. State two assumptions necessary if a Poisson distribution is to provide a suitable model for the distribution of \(X\). Comment briefly on whether these assumptions are likely to be valid. The student counts the number of arrivals, \(x\), in each of 100 ten-second periods. The data are shown in the table below.
    \(x\)012345\(> 5\)
    Frequency, \(f\)18392012830
  2. Show that the sample mean is 1.62 and calculate the sample variance.
  3. Do your calculations in part (ii) support the suggestion that a Poisson distribution is a suitable model for the distribution of \(X\) ? Explain your answer. For the remainder of this question you should assume that \(X\) may be modelled by a Poisson distribution with mean 1.62 .
  4. Find \(\mathrm { P } ( X = 2 )\). Comment on your answer in relation to the data in the table.
  5. Find the probability that at least ten cars arrive in a period of 50 seconds during weekday lunchtimes.
  6. Use a suitable approximating distribution to find the probability that no more than 550 cars arrive in a randomly chosen period of one hour during weekday lunchtimes.
Question 2
View details
2 The fuel economy of a car varies from day to day according to weather and driving conditions. Fuel economy is measured in miles per gallon (mpg). The fuel economy of a particular petrol-fuelled type of car is known to be Normally distributed with mean 38.5 mpg and standard deviation 4.0 mpg .
  1. Find the probability that on a randomly selected day the fuel economy of a car of this type will be above 45.0 mpg .
  2. The manufacturer wishes to quote a fuel economy figure which will be exceeded on \(90 \%\) of days. What figure should be quoted? The daily fuel economy of a similar type of car which is diesel-fuelled is known to be Normally distributed with mean 51.2 mpg and unknown standard deviation \(\sigma \mathrm { mpg }\).
  3. Given that on 75\% of days the fuel economy of this type of car is below 55.0 mpg , show that \(\sigma = 5.63\).
  4. Draw a sketch to illustrate both distributions on a single diagram.
  5. Find the probability that the fuel economy of either the petrol or the diesel model (or both) will be above 45.0 mpg on a randomly selected day. You may assume that the fuel economies of the two models are independent.
Question 3
View details
3 In a triathlon, competitors have to swim 600 metres, cycle 40 kilometres and run 10 kilometres. To improve her strength, a triathlete undertakes a training programme in which she carries weights in a rucksack whilst running. She runs a specific course and notes the total time taken for each run. Her coach is investigating the relationship between time taken and weight carried. The times taken with eight different weights are illustrated on the scatter diagram below, together with the summary statistics for these data. The variables \(x\) and \(y\) represent weight carried in kilograms and time taken in minutes respectively.
\includegraphics[max width=\textwidth, alt={}, center]{be463718-caf7-4bc8-b838-143ab4681d6e-4_627_1536_630_281} Summary statistics: \(n = 8 , \Sigma x = 36 , \Sigma y = 214.8 , \Sigma x ^ { 2 } = 204 , \Sigma y ^ { 2 } = 5775.28 , \Sigma x y = 983.6\).
  1. Calculate the equation of the regression line of \(y\) on \(x\). On one of the eight runs, the triathlete was carrying 4 kilograms and took 27.5 minutes. On this run she was delayed when she tripped and fell over.
  2. Calculate the value of the residual for this weight.
  3. The coach decides to recalculate the equation of the regression line without the data for this run. Would it be preferable to use this recalculated equation or the equation found in part (i) to estimate the delay when the triathlete tripped and fell over? Explain your answer. The triathlete's coach claims that there is positive correlation between cycling and swimming times in triathlons. The product moment correlation coefficient of the times of twenty randomly selected competitors in these two sections is 0.209 .
  4. Carry out a hypothesis test at the \(5 \%\) level to examine the coach's claim, explaining your conclusions clearly.
  5. What distributional assumption is necessary for this test to be valid? How can you use a scatter diagram to decide whether this assumption is likely to be true?
Question 9
View details
9 JUNE 2005
Morning
1 hour 30 minutes
Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2) TIME 1 hour 30 minutes
  • Write your name, centre number and candidate number in the spaces provided on the answer booklet.
  • Answer all the questions.
  • You are permitted to use a graphical calculator in this paper.
  • The number of marks is given in brackets [ ] at the end of each question or part question.
  • You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
  • Final answers should be given to a degree of accuracy appropriate to the context.
  • The total number of marks for this paper is 72.
1 A student is collecting data on traffic arriving at a motorway service station during weekday lunchtimes. The random variable \(X\) denotes the number of cars arriving in a randomly chosen period of ten seconds.
  1. State two assumptions necessary if a Poisson distribution is to provide a suitable model for the distribution of \(X\). Comment briefly on whether these assumptions are likely to be valid. The student counts the number of arrivals, \(x\), in each of 100 ten-second periods. The data are shown in the table below. Carry out a test at the \(5 \%\) level of significance to examine whether there is any association between type of customer and type of drink. State carefully your null and alternative hypotheses.