1 The scatter diagram below shows the birth rates \(x\), and death rates \(y\), measured in standard units, in a random sample of 14 countries in a particular year. Summary statistics for the data are as follows.
$$\Sigma x = 139.8 \quad \Sigma y = 140.4 \quad \Sigma x ^ { 2 } = 1411.66 \quad \Sigma y ^ { 2 } = 1417.88 \quad \Sigma x y = 1398.56 \quad n = 14$$
\includegraphics[max width=\textwidth, alt={}, center]{cd1a8f39-dd3c-44c9-90b0-6a919361d593-2_643_1047_488_550}
- Calculate the sample product moment correlation coefficient.
- Carry out a hypothesis test at the \(5 \%\) significance level to determine whether there is any correlation between birth rates and death rates.
- State the distributional assumption which is necessary for this test to be valid. Explain briefly in the light of the scatter diagram why it appears that the assumption may be valid.
- The values of \(x\) and \(y\) for another country in that year are 14.4 and 7.8 respectively. If these values are included, the value of the sample product moment correlation coefficient is - 0.5694 . Explain why this one observation causes such a large change to the value of the sample product moment correlation coefficient. Discuss whether this brings the validity of the test into question.