OCR MEI S1 (Statistics 1)

Question 1
View details
1 A manufacturer produces tiles. On average 10\% of the tiles produced are faulty. Faulty tiles occur randomly and independently. A random sample of 18 tiles is selected.
  1. (A) Find the probability that there are exactly 2 faulty tiles in the sample.
    (B) Find the probability that there are more than 2 faulty tiles in the sample.
    (C) Find the expected number of faulty tiles in the sample. A cheaper way of producing the tiles is introduced. The manufacturer believes that this may increase the proportion of faulty tiles. In order to check this, a random sample of 18 tiles produced using the cheaper process is selected and a hypothesis test is carried out.
  2. (A) Write down suitable null and alternative hypotheses for the test.
    (B) Explain why the alternative hypothesis has the form that it does.
  3. Find the critical region for the test at the \(5 \%\) level, showing all of your calculations.
  4. In fact there are 4 faulty tiles in the sample. Complete the test, stating your conclusion clearly.
Question 2
View details
2 In a multiple-choice test there are 30 questions. For each question, there is a \(60 \%\) chance that a randomly selected student answers correctly, independently of all other questions.
  1. Find the probability that a randomly selected student gets a total of exactly 20 questions correct.
  2. If 100 randomly selected students take the test, find the expected number of students who get exactly 20 questions correct.
Question 3
View details
3 The birth weights in grams of a random sample of 1000 babies are displayed in the cumulative frequency diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{dfb0acd8-d84b-4291-a811-a68f4942794b-2_1266_1546_487_335}
  1. Use the diagram to estimate the median and interquartile range of the data.
  2. Use your answers to part (i) to estimate the number of outliers in the sample.
  3. Should these outliers be excluded from any further analysis? Briefly explain your answer.
  4. Any baby whose weight is below the 10th percentile is selected for careful monitoring. Use the diagram to determine the range of weights of the babies who are selected.
    \(12 \%\) of new-born babies require some form of special care. A maternity unit has 17 new-born babies. You may assume that these 17 babies form an independent random sample.
  5. Find the probability that
    (A) exactly 2 of these 17 babies require special care,
    (B) more than 2 of the 17 babies require special care.
  6. On 100 independent occasions the unit has 17 babies. Find the expected number of occasions on which there would be more than 2 babies who require special care.
Question 4
View details
4 When onion seeds are sown outdoors, on average two-thirds of them germinate. A gardener sows seeds in pairs, in the hope that at least one will germinate.
  1. Assuming that germination of one of the seeds in a pair is independent of germination of the other seed, find the probability that, if a pair of seeds is selected at random,
    (A) both seeds germinate,
    (B) just one seed germinates,
    (C) neither seed germinates.
  2. Explain why the assumption of independence is necessary in order to calculate the above probabilities. Comment on whether the assumption is likely to be valid.
  3. A pair of seeds is sown. Find the expectation and variance of the number of seeds in the pair which germinate.
  4. The gardener plants 200 pairs of seeds. If both seeds in a pair germinate, the gardener destroys one of the two plants so that only one is left to grow. Of the plants that remain after this, only \(85 \%\) successfully grow to form an onion. Find the expected number of onions grown from the 200 pairs of seeds. If the seeds are sown in a greenhouse, the germination rate is higher. The seed manufacturing company claims that the germination rate is \(90 \%\). The gardener suspects that the rate will not be as high as this, and carries out a trial to investigate. 18 randomly selected seeds are sown in the greenhouse and it is found that 14 germinate.
  5. Write down suitable hypotheses and carry out a test at the \(5 \%\) level to determine whether there is any evidence to support the gardener's suspicions.