OCR MEI S1 (Statistics 1)

Question 1
View details
1 Over a long period of time, \(20 \%\) of all bowls made by a particular manufacturer are imperfect and cannot be sold.
  1. Find the probability that fewer than 4 bowls from a random sample of 10 made by the manufacturer are imperfect. The manufacturer introduces a new process for producing bowls. To test whether there has been an improvement, each of a random sample of 20 bowls made by the new process is examined. From this sample, 2 bowls are found to be imperfect.
  2. Show that this does not provide evidence, at the \(5 \%\) level of significance, of a reduction in the proportion of imperfect bowls. You should show your hypotheses and calculations clearly.
Question 2
View details
2 A game requires 15 identical ordinary dice to be thrown in each turn.
Assuming the dice to be fair, find the following probabilities for any given turn.
  1. No sixes are thrown.
  2. Exactly four sixes are thrown.
  3. More than three sixes are thrown. David and Esme are two players who are not convinced that the dice are fair. David believes that the dice are biased against sixes, while Esme believes the dice to be biased in favour of sixes. In his next turn, David throws no sixes. In her next turn, Esme throws 5 sixes.
  4. Writing down your hypotheses carefully in each case, decide whether
    (A) David's turn provides sufficient evidence at the \(10 \%\) level that the dice are biased against sixes.
    (B) Esme's turn provides sufficient evidence at the \(10 \%\) level that the dice are biased in favour of sixes.
  5. Comment on your conclusions from part (iv).
Question 3
View details
3 At a doctor's surgery, records show that \(20 \%\) of patients who make an appointment fail to turn up. During afternoon surgery the doctor has time to see 16 patients. There are 16 appointments to see the doctor one afternoon.
  1. Find the probability that all 16 patients turn up.
  2. Find the probability that more than 3 patients do not turn up. To improve efficiency, the doctor decides to make more than 16 appointments for afternoon surgery, although there will still only be enough time to see 16 patients. There must be a probability of at least 0.9 that the doctor will have enough time to see all the patients who turn up.
  3. The doctor makes 17 appointments for afternoon surgery. Find the probability that at least one patient does not turn up. Hence show that making 17 appointments is satisfactory.
  4. Now find the greatest number of appointments the doctor can make for afternoon surgery and still have a probability of at least 0.9 of having time to see all patients who turn up. A computerised appointment system is introduced at the surgery. It is decided to test, at the \(5 \%\) level, whether the proportion of patients failing to turn up for their appointments has changed. There are always 20 appointments to see the doctor at morning surgery. On a randomly chosen morning, 1 patient does not turn up.
  5. Write down suitable hypotheses and carry out the test.