OCR MEI S1 (Statistics 1)

Question 3
View details
3 The Venn diagram illustrates the occurrence of two events \(A\) and \(B\).
\includegraphics[max width=\textwidth, alt={}, center]{1ad9c390-b42f-47d8-86c5-f73a42d97721-02_513_826_1713_658} You are given that \(\mathrm { P } ( A \cap B ) = 0.3\) and that the probability that neither \(A\) nor \(B\) occurs is 0.1 . You are also given that \(\mathrm { P } ( A ) = 2 \mathrm { P } ( B )\). Find \(\mathrm { P } ( B )\).
Question 7
View details
7 The cumulative frequency graph below illustrates the distances that 176 children live from their primary school. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Distance from school} \includegraphics[alt={},max width=\textwidth]{1ad9c390-b42f-47d8-86c5-f73a42d97721-04_1073_1571_580_340}
\end{figure}
  1. Use the graph to estimate, to the nearest 10 metres,
    (A) the median distance from school,
    (B) the lower quartile, upper quartile and interquartile range.
  2. Draw a box and whisker plot to illustrate the data. The graph on page 4 used the following grouped data.
    Distance (metres)20040060080010001200
    Cumulative frequency2064118150169176
  3. Copy and complete the grouped frequency table below describing the same data.
    Distance ( \(d\) metres)Frequency
    \(0 < d \leqslant 200\)20
    \(200 < d \leqslant 400\)
  4. Hence estimate the mean distance these children live from school. It is subsequently found that none of the 176 children lives within 100 metres of the school.
  5. Calculate the revised estimate of the mean distance.
  6. Describe what change needs to be made to the cumulative frequency graph.