CAIE P3 (Pure Mathematics 3) 2018 November

Question 5
View details
5 The coordinates \(( x , y )\) of a general point on a curve satisfy the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \left( 2 - x ^ { 2 } \right) y .$$ The curve passes through the point \(( 1,1 )\). Find the equation of the curve, obtaining an expression for \(y\) in terms of \(x\).
Question 7 4 marks
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{2a3df76c-2323-470c-8586-009753a4c1e3-12_357_565_260_790} The diagram shows the curve \(y = 5 \sin ^ { 2 } x \cos ^ { 3 } x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\). The shaded region \(R\) is bounded by the curve and the \(x\)-axis.
  1. Find the \(x\)-coordinate of \(M\), giving your answer correct to 3 decimal places.
  2. Using the substitution \(u = \sin x\) and showing all necessary working, find the exact area of \(R\). [4]
Question 9
View details
9 Let \(f ( x ) = \frac { 6 x ^ { 2 } + 8 x + 9 } { ( 2 - x ) ( 3 + 2 x ) ^ { 2 } }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence, showing all necessary working, show that \(\int _ { - 1 } ^ { 0 } \mathrm { f } ( x ) \mathrm { d } x = 1 + \frac { 1 } { 2 } \ln \left( \frac { 3 } { 4 } \right)\).