AQA S1 (Statistics 1) 2015 June

Question 1 6 marks
View details
1 The number of passengers getting off the 11.45 am train at a railway station on each of 35 days is summarised as follows.
Question 2 4 marks
View details
2 The length of aluminium baking foil on a roll may be modelled by a normal distribution with mean 91 metres and standard deviation 0.8 metres.
  1. Determine the probability that the length of foil on a particular roll is:
    1. less than 90 metres;
    2. not exactly 90 metres;
    3. between 91 metres and 92.5 metres.
  2. The length of cling film on a roll may also be modelled by a normal distribution but with mean 153 metres and standard deviation \(\sigma\) metres. It is required that \(1 \%\) of rolls of cling film should have a length less than 150 metres.
    Find the value of \(\sigma\) that is needed to satisfy this requirement.
    [0pt] [4 marks]
    \includegraphics[max width=\textwidth, alt={}]{4c679380-894f-4d36-aec8-296b662058e2-04_1526_1714_1181_153}
Question 3 2 marks
View details
3 Fourteen candidates each sat two test papers, Paper 1 and Paper 2, on the same day. The marks, out of a total of 50, achieved by the students on each paper are shown in the table.
Question 4
View details
4
  1. Chris shops at his local store on his way to and from work every Friday.
    The event that he buys a morning newspaper is denoted by \(M\), and the event that he buys an evening newspaper is denoted by \(E\). On any one Friday, Chris may buy neither, exactly one or both of these newspapers.
    1. Complete the table of probabilities, printed on the opposite page, where \(M ^ { \prime }\) and \(E ^ { \prime }\) denote the events 'not \(M\) ' and 'not \(E\) ' respectively.
    2. Hence, or otherwise, find the probability that, on any given Friday, Chris buys exactly one newspaper.
    3. Give a numerical justification for the following statement.
      'The events \(M\) and \(E\) are not mutually exclusive.'
  2. The event that Chris buys a morning newspaper on Saturday is denoted by \(S\), and the event that he buys a morning newspaper on the following day, Sunday, is denoted by \(T\). The event that he buys a morning newspaper on both Saturday and Sunday is denoted by \(S \cap T\). Each combination of the events \(S\) and \(T\) is independent of any combination of the events \(M\) and \(E\). However, the events \(S\) and \(T\) are not independent, with $$\mathrm { P } ( S ) = 0.85 , \quad \mathrm { P } ( T \mid S ) = 0.20 \quad \text { and } \quad \mathrm { P } \left( T \mid S ^ { \prime } \right) = 0.75$$ Find the probability that, on a particular Friday, Saturday and Sunday, Chris buys:
    1. all four newspapers;
    2. none of the four newspapers.
    1. State, as briefly as possible, in the context of the question, the event that is denoted by \(M \cap E ^ { \prime } \cap S \cap T ^ { \prime }\).
    2. Calculate the value of \(\mathrm { P } \left( M \cap E ^ { \prime } \cap S \cap T ^ { \prime } \right)\). \section*{Answer space for question 4}
    1. \cline { 2 - 4 } \multicolumn{1}{c|}{}\(\boldsymbol { M }\)\(\boldsymbol { M } ^ { \prime }\)Total
      \(\boldsymbol { E }\)0.160.28
      \(\boldsymbol { E } ^ { \prime }\)
      Total0.601.00
      \includegraphics[max width=\textwidth, alt={}]{4c679380-894f-4d36-aec8-296b662058e2-11_2050_1707_687_153}
Question 5 1 marks
View details
5 The table shows the number of customers, \(x\), and the takings, \(\pounds y\), recorded to the nearest \(\pounds 10\), at a local butcher's shop on each of 10 randomly selected weekdays.
\(\boldsymbol { x }\)86606546719356817557
\(\boldsymbol { y }\)9407906205307701050690780860550
  1. The first 6 pairs of data values in this table are plotted on the scatter diagram shown on the opposite page. Plot the final 4 pairs of data values on the scatter diagram.
    1. Calculate the equation of the least squares regression line in the form \(y = a + b x\) and draw your line on the scatter diagram.
    2. Interpret your value for \(b\) in the context of the question.
    3. State why your value for \(a\) has no practical interpretation.
  2. Estimate, to the nearest \(\pounds 10\), the shop's takings when the number of customers is 50 .
    [0pt] [1 mark]
    \includegraphics[max width=\textwidth, alt={}]{4c679380-894f-4d36-aec8-296b662058e2-14_1255_1705_1448_155}
    Butcher's shop \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Answer space for question 5} \includegraphics[alt={},max width=\textwidth]{4c679380-894f-4d36-aec8-296b662058e2-15_2335_1760_372_100}
    \end{figure}
Question 6 3 marks
View details
6 Customers at a supermarket can pay at a checkout either by cash, debit card or credit card.
  1. The probability that a customer pays by cash is 0.22 . Calculate the probability that exactly 2 customers from a random sample of 24 customers pay by cash.
  2. The probability that a customer pays by debit card is 0.45 . Determine the probability that the number of customers who pay by debit card from a random sample of \(\mathbf { 4 0 }\) customers is:
    1. fewer than 20 ;
    2. more than 15 ;
    3. at least 12 but at most 24 .
  3. The random variable \(W\) denotes the number of customers who pay by credit card from a random sample of \(\mathbf { 2 0 0 }\) customers. Calculate values for the mean and the variance of \(W\).
    [0pt] [3 marks]
Question 7 2 marks
View details
7
  1. A greengrocer displays apples in trays. Each customer selects the apples he or she wishes to buy and puts them into a bag. Records show that the weight of such bags of apples may be modelled by a normal distribution with mean 1.16 kg and standard deviation 0.43 kg . Determine the probability that the mean weight of a random sample of 10 such bags of apples exceeds 1.25 kg .
  2. The greengrocer also displays pears in trays. Each customer selects the pears he or she wishes to buy and puts them into a bag. A random sample of 40 such bags of pears had a mean weight of 0.86 kg and a standard deviation of 0.65 kg .
    1. Construct a \(\mathbf { 9 6 \% }\) confidence interval for the mean weight of a bag of pears.
    2. Hence comment on a claim that customers wish to buy, on average, a greater weight of apples than of pears.
      [0pt] [2 marks]