OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 The points \(\mathrm { A } , \mathrm { B }\) and C have coordinates \(\mathrm { A } ( 3,2 , - 1 ) , \mathrm { B } ( - 1,1,2 )\) and \(\mathrm { C } ( 10,5 , - 5 )\), relative to the origin O . Show that \(\overrightarrow { \mathrm { OC } }\) can be written in the form \(\lambda \overrightarrow { \mathrm { OA } } + \mu \overrightarrow { \mathrm { OB } }\), where \(\lambda\) and \(\mu\) are to be determined. What can you deduce about the points \(\mathrm { O } , \mathrm { A } , \mathrm { B }\) and C from the fact that \(\overrightarrow { \mathrm { OC } }\) can be expressed as a combination of \(\overrightarrow { \mathrm { OA } }\) and \(\overrightarrow { \mathrm { OB } }\) ?
Question 2
View details
2 Vectors \(\mathbf { a }\) and \(\mathbf { b }\) are given by \(\mathbf { a } = 2 \mathbf { i } + \mathbf { j } - \mathbf { k }\) and \(\mathbf { b } = 4 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\).
Find constants \(\lambda\) and \(\mu\) such that \(\lambda \mathbf { a } + \mu \mathbf { b } = 4 \mathbf { j } - 3 \mathbf { k }\).
Question 3 6 marks
View details
3 A triangle ABC has vertices \(\mathrm { A } ( - 2,4,1 ) , \mathrm { B } ( 2,3,4 )\) and \(\mathrm { C } ( 4,8,3 )\). By calculating a suitable scalar product, show that angle ABC is a right angle. Hence calculate the area of the triangle. [6]