OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 Given that \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\), show that \(\cot ^ { 2 } \theta - \cot \theta - 2 = 0\).
Hence solve the equation \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
Question 2
View details
2 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for \(\pi\).
  1. Fig. 8.1 shows a regular 12-sided polygon inscribed in a circle of radius 1 unit, centre \(\mathrm { O } . \mathrm { AB }\) is one of the sides of the polygon. C is the midpoint of AB . Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{54a69773-651f-4e2f-9a3c-06ea7c07098b-2_457_422_457_936} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
    \end{figure} (A) Show that \(\mathrm { AB } = 2 \sin 15 ^ { \circ }\).
    (B) Use a double angle formula to express \(\cos 30 ^ { \circ }\) in terms of \(\sin 15 ^ { \circ }\). Using the exact value of \(\cos 30 ^ { \circ }\), show that \(\sin 15 ^ { \circ } = \frac { 1 } { 2 } \sqrt { 2 - \sqrt { 3 } }\).
    (C) Use this result to find an exact expression for the perimeter of the polygon. Hence show that \(\pi > 6 \sqrt { 2 - \sqrt { 3 } }\).
  2. In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{54a69773-651f-4e2f-9a3c-06ea7c07098b-2_450_420_1562_938} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
    \end{figure} (A) Show that \(\mathrm { DE } = 2 \tan 15 ^ { \circ }\).
    (B) Let \(t = \tan 15 ^ { \circ }\). Use a double angle formula to express \(\tan 30 ^ { \circ }\) in terms of \(t\). Hence show that \(t ^ { 2 } + 2 \sqrt { 3 } t - 1 = 0\).
    (C) Solve this equation, and hence show that \(\pi < 12 ( 2 - \sqrt { 3 } )\).
  3. Use the results in parts (i)( \(C\) ) and (ii)( \(C\) ) to establish upper and lower bounds for the value of \(\pi\), giving your answers in decimal form.
Question 3
View details
3 Express \(\sin \theta - 3 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants to be determined, and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Hence solve the equation \(\sin \theta - 3 \cos \theta = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{54a69773-651f-4e2f-9a3c-06ea7c07098b-4_606_624_236_754} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} In a theme park ride, a capsule C moves in a vertical plane (see Fig. 8). With respect to the axes shown, the path of C is modelled by the parametric equations $$x = 10 \cos \theta + 5 \cos 2 \theta , \quad y = 10 \sin \theta + 5 \sin 2 \theta , \quad ( 0 \leqslant \theta < 2 \pi )$$ where \(x\) and \(y\) are in metres.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { \cos \theta + \cos 2 \theta } { \sin \theta + \sin 2 \theta }\). Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 3 } \pi\). Hence find the exact coordinates of the highest point A on the path of C .
  2. Express \(x ^ { 2 } + y ^ { 2 }\) in terms of \(\theta\). Hence show that $$x ^ { 2 } + y ^ { 2 } = 125 + 100 \cos \theta$$
  3. Using this result, or otherwise, find the greatest and least distances of C from O . You are given that, at the point B on the path vertically above O , $$2 \cos ^ { 2 } \theta + 2 \cos \theta - 1 = 0$$
  4. Using this result, and the result in part (ii), find the distance OB. Give your answer to 3 significant figures.
Question 5
View details
5 Show that \(\cot 2 \theta = \frac { 1 - \tan ^ { 2 } \theta } { 2 \tan \theta }\).
Hence solve the equation $$\cot 2 \theta = 1 + \tan \theta \quad \text { for } 0 ^ { \circ } < \theta < 360 ^ { \circ } .$$