7 Fig. 1 shows part of the graph of \(y = \sin x \quad \sqrt { 3 } \cos x\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c0fcd64b-8ca0-4309-9f58-c23cc4208f4d-3_452_613_1187_745}
\captionsetup{labelformat=empty}
\caption{Fig. 1}
\end{figure}
Express \(\quad \sqrt { } \quad\) in the form \(R \sin ( x - \alpha )\), where \(R > 0\) and \(0 \leqslant \alpha \leqslant \frac { 1 } { 2 } \pi\).
Hence write down the exact coordinates of the turning point P .