2 Given the binomial expansion \(( 1 + q x ) ^ { p } = 1 - x + 2 x ^ { 2 } + \ldots\), find the values of \(p\) and \(q\). Hence state the set of values of \(x\) for which the expansion is valid. [6]
3 Find the first three terms in the binomial expansion of \(\frac { 1 } { ( 3 - 2 x ) ^ { 3 } }\) in ascending powers of \(x\). State the set of values of \(x\) for which the expansion is valid. [0pt]
[7]
4 Find the first three terms in the binomial expansion of \(\frac { 1 + 2 x } { ( 1 - 2 x ) ^ { 2 } }\) in ascending powers of \(x\). State the set of values of \(x\) for which the expansion is valid. [0pt]
[7]
5 Show that \(( 1 + 2 x ) ^ { \frac { 1 } { 3 } } = 1 + \frac { 2 } { 3 } x - \frac { 4 } { 9 } x ^ { 2 } + \ldots\), and find the next term in the expansion.
State the set of values of \(x\) for which the expansion is valid.
Find the first three terms in the binomial expansion of \(\frac { 1 } { \sqrt { 1 - 2 x } }\). State the set of values of \(x\) for which the expansion is valid.
Hence find the first three terms in the series expansion of \(\frac { 1 + 2 x } { \sqrt { 1 - 2 x } }\).
Find the first three non-zero terms of the binomial expansion of \(\frac { 1 } { \sqrt { 4 - x ^ { 2 } } }\) for \(| x | < 2\). [4]
Use this result to find an approximation for \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to
4 significant figures.
Given that \(\int \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x = \arcsin \left( \frac { 1 } { 2 } x \right) + c\), evaluate \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to 4 significant figures.