OCR MEI C4 (Core Mathematics 4)

Question 2 6 marks
View details
2 Given the binomial expansion \(( 1 + q x ) ^ { p } = 1 - x + 2 x ^ { 2 } + \ldots\), find the values of \(p\) and \(q\). Hence state the set of values of \(x\) for which the expansion is valid. [6]
Question 3 7 marks
View details
3 Find the first three terms in the binomial expansion of \(\frac { 1 } { ( 3 - 2 x ) ^ { 3 } }\) in ascending powers of \(x\). State the set of values of \(x\) for which the expansion is valid.
[0pt] [7]
Question 4 7 marks
View details
4 Find the first three terms in the binomial expansion of \(\frac { 1 + 2 x } { ( 1 - 2 x ) ^ { 2 } }\) in ascending powers of \(x\). State the set of values of \(x\) for which the expansion is valid.
[0pt] [7]
Question 5
View details
5 Show that \(( 1 + 2 x ) ^ { \frac { 1 } { 3 } } = 1 + \frac { 2 } { 3 } x - \frac { 4 } { 9 } x ^ { 2 } + \ldots\), and find the next term in the expansion.
State the set of values of \(x\) for which the expansion is valid.
Question 6
View details
6
  1. Find the first three terms in the binomial expansion of \(\frac { 1 } { \sqrt { 1 - 2 x } }\). State the set of values of \(x\) for which the expansion is valid.
  2. Hence find the first three terms in the series expansion of \(\frac { 1 + 2 x } { \sqrt { 1 - 2 x } }\).
Question 7 4 marks
View details
7
  1. Find the first three non-zero terms of the binomial expansion of \(\frac { 1 } { \sqrt { 4 - x ^ { 2 } } }\) for \(| x | < 2\). [4]
  2. Use this result to find an approximation for \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to
    4 significant figures.
  3. Given that \(\int \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x = \arcsin \left( \frac { 1 } { 2 } x \right) + c\), evaluate \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to 4 significant figures.