- (i) Expand \(( 1 + a x ) ^ { - 3 } , | a x | < 1\), in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\). Give each coefficient as simply as possible in terms of the constant \(a\).
Given that the coefficient of \(x ^ { 2 }\) in the expansion of \(\frac { 6 - x } { ( 1 + a x ) ^ { 3 } } , | a x | < 1\), is 3 ,
(ii) find the two possible values of \(a\).
Given also that \(a < 0\),
(iii) show that the coefficient of \(x ^ { 3 }\) in the expansion of \(\frac { 6 - x } { ( 1 + a x ) ^ { 3 } }\) is \(\frac { 14 } { 9 }\).