OCR C4 (Core Mathematics 4)

Question 1
View details
  1. Evaluate
$$\int _ { 0 } ^ { \pi } \sin x ( 1 + \cos x ) d x$$
Question 2
View details
  1. (i) Simplify
$$\frac { x ^ { 2 } + 7 x + 12 } { 2 x ^ { 2 } + 9 x + 4 }$$ (ii) Express $$\frac { x + 4 } { 2 x ^ { 2 } + 3 x + 1 } - \frac { 2 } { 2 x + 1 }$$ as a single fraction in its simplest form.
Question 3
View details
3. Find the exact value of $$\int _ { 1 } ^ { 3 } x ^ { 2 } \ln x d x$$
Question 4
View details
4.
\includegraphics[max width=\textwidth, alt={}]{23bd8979-9ba6-4e77-a3d1-88feb5e5a5b3-1_444_728_1425_536}
The diagram shows the curve with parametric equations $$x = t + \sin t , \quad y = \sin t , \quad 0 \leq t \leq \pi$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find, in exact form, the coordinates of the point where the tangent to the curve is parallel to the \(x\)-axis.
Question 5
View details
5. Given that \(y = - 2\) when \(x = 1\), solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = y ^ { 2 } \sqrt { x }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
Question 6
View details
6. (i) Find \(\int \tan ^ { 2 } 3 x \mathrm {~d} x\).
(ii) Using the substitution \(u = x ^ { 2 } + 4\), evaluate $$\int _ { 0 } ^ { 2 } \frac { 5 x } { \left( x ^ { 2 } + 4 \right) ^ { 2 } } d x$$
Question 7
View details
  1. A curve has the equation
$$3 x ^ { 2 } - 2 x + x y + y ^ { 2 } - 11 = 0$$ The point \(P\) on the curve has coordinates \(( - 1,3 )\).
  1. Show that the normal to the curve at \(P\) has the equation \(y = 2 - x\).
  2. Find the coordinates of the point where the normal to the curve at \(P\) meets the curve again.
Question 8
View details
8. The line \(l _ { 1 }\) passes through the points \(A\) and \(B\) with position vectors \(( - 3 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k } )\) and ( \(7 \mathbf { i } - \mathbf { j } + 12 \mathbf { k }\) ) respectively, relative to a fixed origin.
  1. Find a vector equation for \(l _ { 1 }\). The line \(l _ { 2 }\) has the equation $$\mathbf { r } = ( 5 \mathbf { j } - 7 \mathbf { k } ) + \mu ( \mathbf { i } - 2 \mathbf { j } + 7 \mathbf { k } )$$ The point \(C\) lies on \(l _ { 2 }\) and is such that \(A C\) is perpendicular to \(B C\).
  2. Show that one possible position vector for \(C\) is \(( \mathbf { i } + 3 \mathbf { j } )\) and find the other. Assuming that \(C\) has position vector \(( \mathbf { i } + 3 \mathbf { j } )\),
  3. find the area of triangle \(A B C\), giving your answer in the form \(k \sqrt { 5 }\).
Question 9
View details
9. $$f ( x ) = \frac { 8 - x } { ( 1 + x ) ( 2 - x ) } , \quad | x | < 1$$
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x = \ln k$$ where \(k\) is an integer to be found.
  3. Find the series expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.