5 The points \(\mathrm { A } , \mathrm { B }\) and C have coordinates \(\mathrm { A } ( 3,2 , - 1 ) , \mathrm { B } ( - 1,1,2 )\) and \(\mathrm { C } ( 10,5 , - 5 )\), relative to the origin O . Show that \(\overrightarrow { \mathrm { OC } }\) can be written in the form \(\lambda \overrightarrow { \mathrm { OA } } + \mu \overrightarrow { \mathrm { OB } }\), where \(\lambda\) and \(\mu\) are to be determined.
What can you deduce about the points \(\mathrm { O } , \mathrm { A } , \mathrm { B }\) and C from the fact that \(\overrightarrow { \mathrm { OC } }\) can be expressed as a combination of \(\overrightarrow { \mathrm { OA } }\) and \(\overrightarrow { \mathrm { OB } }\) ?