OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 Explain why the number 1836.108 for the ratio Rest mass of electron would be suitable for communication with other civilisations whereas neither the rest mass of the proton nor that of the electron would be.
Question 2
View details
2 A civilisation which works in base 5 sends out the first 6 digits of \(\pi\) as 3.032 32. Convert this to base 10.
Question 3
View details
3 Complete this table to show the next 3 values of the iteration $$x _ { n + 1 } = k x _ { n } \left( 1 - x _ { n } \right)$$ in the case when \(k = 3.2\) and \(x _ { 0 } = 0.5\). Give your answers to calculator accuracy.
\(n\)\(x _ { n }\)
00.5
10.8
20.512
3
4
5
Question 4
View details
4 Justify the statement that the equation in line 83, $$\frac { \phi } { 1 } = \frac { 1 } { \phi - 1 }$$ has the solution \(\phi = \frac { 1 \pm \sqrt { 5 } } { 2 }\).
Question 5
View details
5 Justify the statement in line 87 that $$\frac { 1 } { \phi } = \frac { \sqrt { 5 } - 1 } { 2 }$$
Question 6 4 marks
View details
6 A sequence is defined by $$a _ { n + 1 } = 2 a _ { n } + 3 a _ { n - 1 } \quad \text { with } a _ { 1 } = 1 \text { and } a _ { 2 } = 1 .$$ Using the method on page 5, show that the value to which the ratio of successive terms converges is 3 .
[0pt] [4]
Question 8
View details
8 The upper and lower surfaces of a coal seam are modelled as planes ABC and DEF, as shown in Fig. 8. All dimensions are metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{070e9904-12b9-4458-b8f2-60c89b31b828-093_1013_1399_488_372} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Relative to axes \(\mathrm { O } x\) (due east), \(\mathrm { O } y\) (due north) and \(\mathrm { O } z\) (vertically upwards), the coordinates of the points are as follows.
A: (0, 0, -15)
B: (100, 0, -30)
C: (0, 100, -25)
D: (0, 0, -40)
E: (100, 0, -50)
F: (0, 100, -35)
  1. Verify that the cartesian equation of the plane ABC is \(3 x + 2 y + 20 z + 300 = 0\).
  2. Find the vectors \(\overrightarrow { \mathrm { DE } }\) and \(\overrightarrow { \mathrm { DF } }\). Show that the vector \(2 \mathbf { i } - \mathbf { j } + 20 \mathbf { k }\) is perpendicular to each of these vectors. Hence find the cartesian equation of the plane DEF .
  3. By calculating the angle between their normal vectors, find the angle between the planes ABC and DEF. It is decided to drill down to the seam from a point \(\mathrm { R } ( 15,34,0 )\) in a line perpendicular to the upper surface of the seam. This line meets the plane ABC at the point S .
  4. Write down a vector equation of the line RS. Calculate the coordinates of S.