OCR C4 (Core Mathematics 4) 2013 June

Question 1
View details
1 Express \(\frac { ( x - 7 ) ( x - 2 ) } { ( x + 2 ) ( x - 1 ) ^ { 2 } }\) in partial fractions.
Question 2
View details
2 Find \(\int x ^ { 8 } \ln ( 3 x ) \mathrm { d } x\).
Question 3
View details
3 Determine whether the lines whose equations are $$\mathbf { r } = ( 1 + 2 \lambda ) \mathbf { i } - \lambda \mathbf { j } + ( 3 + 5 \lambda ) \mathbf { k } \text { and } \mathbf { r } = ( \mu - 1 ) \mathbf { i } + ( 5 - \mu ) \mathbf { j } + ( 2 - 5 \mu ) \mathbf { k }$$ are parallel, intersect or are skew.
Question 4
View details
4 The equation of a curve is \(y = \cos 2 x + 2 \sin x\). Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence find the coordinates of the stationary points on the curve for \(0 < x < \pi\).
Question 5
View details
5
  1. Show that \(\frac { 1 } { 1 - \tan x } - \frac { 1 } { 1 + \tan x } \equiv \tan 2 x\).
  2. Hence evaluate \(\int _ { \frac { 1 } { 12 } \pi } ^ { \frac { 1 } { 6 } \pi } \left( \frac { 1 } { 1 - \tan x } - \frac { 1 } { 1 + \tan x } \right) \mathrm { d } x\), giving your answer in the form \(a \ln b\).
Question 6
View details
6 Use the substitution \(u = 1 + \ln x\) to find \(\int \frac { \ln x } { x ( 1 + \ln x ) ^ { 2 } } \mathrm {~d} x\).
Question 7
View details
7 Points \(A ( 2,2,5 ) , B ( 1 , - 1 , - 4 ) , C ( 3,3,10 )\) and \(D ( 8,6,3 )\) are the vertices of a pyramid with a triangular base.
  1. Calculate the lengths \(A B\) and \(A C\), and the angle \(B A C\).
  2. Show that \(\overrightarrow { A D }\) is perpendicular to both \(\overrightarrow { A B }\) and \(\overrightarrow { A C }\).
  3. Calculate the volume of the pyramid \(A B C D\).
    [0pt] [The volume of the pyramid is \(V = \frac { 1 } { 3 } \times\) base area × perpendicular height.]
Question 8
View details
8 At time \(t\) seconds, the radius of a spherical balloon is \(r \mathrm {~cm}\). The balloon is being inflated so that the rate of increase of its radius is inversely proportional to the square root of its radius. When \(t = 5 , r = 9\) and, at this instant, the radius is increasing at \(1.08 \mathrm {~cm} \mathrm {~s} ^ { - 1 }\).
  1. Write down a differential equation to model this situation, and solve it to express \(r\) in terms of \(t\).
  2. How much air is in the balloon initially?
    [0pt] [The volume of a sphere is \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\).]
Question 9
View details
9 A curve has parametric equations \(x = \frac { 1 } { t } - 1\) and \(y = 2 t + \frac { 1 } { t ^ { 2 } }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\), simplifying your answer.
  2. Find the coordinates of the stationary point and, by considering the gradient of the curve on either side of this point, determine its nature.
  3. Find a cartesian equation of the curve.
Question 10
View details
10
  1. Show that \(\frac { x } { ( 1 - x ) ^ { 3 } } \approx x + 3 x ^ { 2 } + 6 x ^ { 3 }\) for small values of \(x\).
  2. Use this result, together with a suitable value of \(x\), to obtain a decimal estimate of the value of \(\frac { 100 } { 729 }\).
  3. Show that \(\frac { x } { ( 1 - x ) ^ { 3 } } = - \frac { 1 } { x ^ { 2 } } \left( 1 - \frac { 1 } { x } \right) ^ { - 3 }\). Hence find the first three terms of the binomial expansion of \(\frac { x } { ( 1 - x ) ^ { 3 } }\) in powers of \(\frac { 1 } { x }\).
  4. Comment on the suitability of substituting the same value of \(x\) as used in part (ii) in the expansion in part (iii) to estimate the value of \(\frac { 100 } { 729 }\).