9 A tank contains water which is heated by an electric water heater working under the action of a thermostat. The temperature of the water, \(\theta ^ { \circ } \mathrm { C }\), may be modelled as follows. When the water heater is first switched on, \(\theta = 40\). The heater causes the temperature to increase at a rate \(k _ { 1 } { } ^ { \circ } \mathrm { C }\) per second, where \(k _ { 1 }\) is a constant, until \(\theta = 60\). The heater then switches off.
- Write down, in terms of \(k _ { 1 }\), how long it takes for the temperature to increase from \(40 ^ { \circ } \mathrm { C }\) to \(60 ^ { \circ } \mathrm { C }\).
The temperature of the water then immediately starts to decrease at a variable rate \(k _ { 2 } ( \theta - 20 ) ^ { \circ } \mathrm { C }\) per second, where \(k _ { 2 }\) is a constant, until \(\theta = 40\).
- Write down a differential equation to represent the situation as the temperature is decreasing.
- Find the total length of time for the temperature to increase from \(40 ^ { \circ } \mathrm { C }\) to \(60 ^ { \circ } \mathrm { C }\) and then decrease to \(40 ^ { \circ } \mathrm { C }\). Give your answer in terms of \(k _ { 1 }\) and \(k _ { 2 }\).
4