8 The points \(A\) and \(B\) have coordinates \(( 2,1 , - 1 )\) and \(( 3,1 , - 2 )\) respectively. The angle \(O B A\) is \(\theta\), where \(O\) is the origin.
- Find the vector \(\overrightarrow { A B }\).
- Show that \(\cos \theta = \frac { 5 } { 2 \sqrt { 7 } }\).
- The point \(C\) is such that \(\overrightarrow { O C } = 2 \overrightarrow { O B }\). The line \(l\) is parallel to \(\overrightarrow { A B }\) and passes through the point \(C\). Find a vector equation of \(l\).
- The point \(D\) lies on \(l\) such that angle \(O D C = 90 ^ { \circ }\). Find the coordinates of \(D\).