(A) \(( x - y ) \left( x ^ { 2 } + x y + y ^ { 2 } \right) = x ^ { 3 } - y ^ { 3 }\),
(B) \(\left( x + \frac { 1 } { 2 } y \right) ^ { 2 } + \frac { 3 } { 4 } y ^ { 2 } = x ^ { 2 } + x y + y ^ { 2 }\).
(ii) Hence prove that, for all real numbers \(x\) and \(y\), if \(x > y\) then \(x ^ { 3 } > y ^ { 3 }\).
(i) Verify the following statement:
$$\text { ' } 2 ^ { p } - 1 \text { is a prime number for all prime numbers } p \text { less than } 11 \text { '. }$$
(ii) Calculate \(23 \times 89\), and hence disprove this statement:
' \(2 ^ { p } - 1\) is a prime number for all prime numbers \(p\) '.