OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
Question 2
View details
2 Fig. 8 shows the line \(y = x\) and parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where $$\mathrm { f } ( x ) = \mathrm { e } ^ { x - 1 } , \quad \mathrm {~g} ( x ) = 1 + \ln x$$ The curves intersect the axes at the points A and B , as shown. The curves and the line \(y = x\) meet at the point C . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a55b82e6-3fcb-4283-bd36-06a17a9a7536-1_804_888_1061_662} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of A and B . Verify that the coordinates of C are \(( 1,1 )\).
  2. Prove algebraically that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
  3. Evaluate \(\int _ { 0 } ^ { 1 } \mathrm { f } ( x ) \mathrm { d } x\), giving your answer in terms of e .
  4. Use integration by parts to find \(\int \ln x \mathrm {~d} x\). Hence show that \(\int _ { \mathrm { e } ^ { - 1 } } ^ { 1 } \mathrm {~g} ( x ) \mathrm { d } x = \frac { 1 } { \mathrm { e } }\).
  5. Find the area of the region enclosed by the lines OA and OB , and the arcs AC and BC .
Question 4
View details
4 Find \(\int x \mathrm { e } ^ { 3 x } \mathrm {~d} x\).
Question 5
View details
5 Show that \(\int _ { 1 } ^ { 4 } \frac { x } { x ^ { 2 } + 2 } \mathrm {~d} x = \frac { 1 } { 2 } \ln 6\).