OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Fig. 8 shows a sketch of part of the curve \(y = x \sin 2 x\), where \(x\) is in radians.
The curve crosses the \(x\)-axis at the point P . The tangent to the curve at P crosses the \(y\)-axis at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{35646966-3747-4f1d-bf94-60e9e3130afe-1_706_920_489_606} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence show that the \(x\)-coordinates of the turning points of the curve satisfy the equation \(\tan 2 x + 2 x = 0\).
  2. Find, in terms of \(\pi\), the \(x\)-coordinate of the point P . Show that the tangent PQ has equation \(2 \pi x + 2 y = \pi ^ { 2 }\).
    Find the exact coordinates of Q.
  3. Show that the exact value of the area shaded in Fig. 8 is \(\frac { 1 } { 8 } \pi \left( \pi ^ { 2 } - 2 \right)\).
Question 2
View details
2
  1. Use the substitution \(u = 1 + x\) to show that $$\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x = \int _ { a } ^ { b } \left( u ^ { 2 } - 3 u + 3 - \frac { 1 } { u } \right) \mathrm { d } u$$ where \(a\) and \(b\) are to be found.
    Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x\), giving your answer in exact form. Fig. 8 shows the curve \(y = x ^ { 2 } \ln ( 1 + x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{35646966-3747-4f1d-bf94-60e9e3130afe-2_829_806_944_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Verify that the origin is a stationary point of the curve.
  3. Using integration by parts, and the result of part (i), find the exact area enclosed by the curve \(y = x ^ { 2 } \ln ( 1 + x )\), the \(x\)-axis and the line \(x = 1\).
Question 3
View details
3
  1. Differentiate \(\frac { \ln x } { x ^ { 2 } }\), simplifying your answer.
  2. Using integration by parts, show that \(\int \frac { \ln x } { x ^ { 2 } } \mathrm {~d} x = - \frac { 1 } { x } ( 1 + \ln x ) + c\).
Question 4
View details
4 Evaluate the following integrals, giving your answers in exact form. \begin{displayquote}
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\)
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\) \end{displayquote}