OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Find the exact value of \(\int ^ { 2 } x ^ { 3 } \ln x \mathrm {~d} x\).
Question 2
View details
2 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { x } { \sqrt { 2 + x ^ { 2 } } }\) \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93ee09be-f014-4dd7-a8da-8646837b17a5-1_471_674_761_719} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show algebraically that \(\mathrm { f } ( x )\) is an odd function. Interpret this result geometrically.
  2. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 } { \left( 2 + x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the exact gradient of the curve at the origin.
  3. Find the exact area of the region bounded by the curve, the \(x\)-axis and the line \(x = 1\).
  4. \(( A )\) Show that if \(y = \frac { x } { \sqrt { 2 + x ^ { 2 } } }\), then \(\frac { 1 } { y ^ { 2 } } = \frac { 2 } { x ^ { 2 } } + 1\).
    (B) Differentiate \(\frac { 1 } { y ^ { 2 } } = \frac { 2 } { x ^ { 2 } } + 1\) implicitly to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 y ^ { 3 } } { x ^ { 3 } }\). Explain why this expression cannot be used to find the gradient of the curve at the origin.
Question 3
View details
3 Evaluate \(\int _ { 0 } ^ { 3 } x ( x + 1 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} x\), giving your answer as an exact fraction.
Question 4 5 marks
View details
4 Show that \(\int _ { 0 } ^ { \frac { \pi } { 2 } } x \cos \frac { 1 } { 2 } x \mathrm {~d} x = \frac { \sqrt { 2 } } { 2 } \pi + 2 \sqrt { 2 } - 4\).
[0pt] [5]
Question 5
View details
5 Fig. 8 shows the curve \(y = \frac { x } { \sqrt { x - 2 } }\), together with the lines \(y = x\) and \(x = 11\). The curve meets these lines at P and Q respectively. R is the point \(( 11,11 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93ee09be-f014-4dd7-a8da-8646837b17a5-2_606_732_867_710} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the \(x\)-coordinate of P is 3 .
  2. Show that, for the curve, \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 4 } { 2 ( x - 2 ) ^ { \frac { 3 } { 2 } } }\). Hence find the gradient of the curve at P . Use the result to show that the curve is not symmetrical about \(y = x\).
  3. Using the substitution \(u = x - 2\), show that \(\int _ { 3 } ^ { 11 } \frac { x } { \sqrt { x - 2 } } \mathrm {~d} x = 25 \frac { 1 } { 3 }\). Hence find the area of the region PQR bounded by the curve and the lines \(y = x\) and \(x = 11\).