OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Solve each of the following equations, giving your answers in exact form.
  1. \(6 \arcsin x - \pi = 0\).
  2. \(\arcsin x = \arccos x\).
Question 2
View details
2 The curves in parts (i) and (ii) have equations of the form \(y = a + b \sin c x\), where \(a , b\) and \(c\) are constants. For each curve, find the values of \(a , b\) and \(c\).

  1. \includegraphics[max width=\textwidth, alt={}, center]{11877196-83d9-4283-9eef-e617bea50c63-1_449_681_834_408}

  2. \includegraphics[max width=\textwidth, alt={}, center]{11877196-83d9-4283-9eef-e617bea50c63-1_376_681_1344_408}
Question 3
View details
3 Given that \(\arcsin x = \arccos y\), prove that \(x ^ { 2 } + y ^ { 2 } = 1\). [Hint: let \(\arcsin x = \theta\).]
Question 4
View details
4
  1. State the period of the function \(\mathrm { f } ( x ) = 1 + \cos 2 x\), where \(x\) is in degrees.
  2. State a sequence of two geometrical transformations which maps the curve \(y = \cos x\) onto the curve \(y = \mathrm { f } ( x )\).
  3. Sketch the graph of \(y = \mathrm { f } ( x )\) for \(- 180 ^ { \circ } < x < 180 ^ { \circ }\).
Question 5
View details
5 Fig. 7 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + 2 \arctan x , x \in \mathbb { R }\). The scales on the \(x\) - and \(y\)-axes are the same. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{11877196-83d9-4283-9eef-e617bea50c63-2_855_838_1028_688} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the range of f , giving your answer in terms of \(\pi\).
  2. Find \(\mathrm { f } ^ { - 1 } ( x )\), and add a sketch of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) to the copy of Fig. 7.
Question 6
View details
6 Fig. 8 shows part of the curve \(y = x \cos 3 x\). The curve crosses the \(x\)-axis at \(\mathrm { O } , \mathrm { P }\) and Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{11877196-83d9-4283-9eef-e617bea50c63-3_553_1178_622_529} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P and Q .
  2. Find the exact gradient of the curve at the point P . Show also that the turning points of the curve occur when \(x \tan 3 x = \frac { 1 } { 3 }\).
  3. Find the area of the region enclosed by the curve and the \(x\)-axis between O and P , giving your answer in exact form.
Question 7
View details
7 Sketch the curve \(y = 2 \arccos x\) for \(- 1 \leqslant x \leqslant 1\).
Question 8
View details
8 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \arctan x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{11877196-83d9-4283-9eef-e617bea50c63-4_379_722_467_715} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the range of the function \(\mathrm { f } ( x )\), giving your answer in terms of \(\pi\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Find the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the origin.
  3. Hence write down the gradient of \(y = \frac { 1 } { 2 } \arctan x\) at the origin.
Question 9
View details
9 Given that \(\arcsin x = \frac { 1 } { 6 } \pi\), find \(x\). Find \(\arccos x\) in terms of \(\pi\).