CAIE P3 (Pure Mathematics 3) 2014 June

Question 1
View details
1
  1. Simplify \(\sin 2 \alpha \sec \alpha\).
  2. Given that \(3 \cos 2 \beta + 7 \cos \beta = 0\), find the exact value of \(\cos \beta\).
Question 2
View details
2 Use the substitution \(u = 1 + 3 \tan x\) to find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sqrt { } ( 1 + 3 \tan x ) } { \cos ^ { 2 } x } d x$$
Question 3
View details
3 The parametric equations of a curve are $$x = \ln ( 2 t + 3 ) , \quad y = \frac { 3 t + 2 } { 2 t + 3 }$$ Find the gradient of the curve at the point where it crosses the \(y\)-axis.
Question 4
View details
4 The variables \(x\) and \(y\) are related by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 y \mathrm { e } ^ { 3 x } } { 2 + \mathrm { e } ^ { 3 x } }$$ Given that \(y = 36\) when \(x = 0\), find an expression for \(y\) in terms of \(x\).
Question 5
View details
5 The complex number \(z\) is defined by \(z = \frac { 9 \sqrt { } 3 + 9 i } { \sqrt { } 3 - i }\). Find, showing all your working,
  1. an expression for \(z\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\),
  2. the two square roots of \(z\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
Question 6
View details
6 It is given that \(2 \ln ( 4 x - 5 ) + \ln ( x + 1 ) = 3 \ln 3\).
  1. Show that \(16 x ^ { 3 } - 24 x ^ { 2 } - 15 x - 2 = 0\).
  2. By first using the factor theorem, factorise \(16 x ^ { 3 } - 24 x ^ { 2 } - 15 x - 2\) completely.
  3. Hence solve the equation \(2 \ln ( 4 x - 5 ) + \ln ( x + 1 ) = 3 \ln 3\).
Question 7
View details
7 The straight line \(l\) has equation \(\mathbf { r } = 4 \mathbf { i } - \mathbf { j } + 2 \mathbf { k } + \lambda ( 2 \mathbf { i } - 3 \mathbf { j } + 6 \mathbf { k } )\). The plane \(p\) passes through the point \(( 4 , - 1,2 )\) and is perpendicular to \(l\).
  1. Find the equation of \(p\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the perpendicular distance from the origin to \(p\).
  3. A second plane \(q\) is parallel to \(p\) and the perpendicular distance between \(p\) and \(q\) is 14 units. Find the possible equations of \(q\).
Question 8
View details
8
  1. By sketching each of the graphs \(y = \operatorname { cosec } x\) and \(y = x ( \pi - x )\) for \(0 < x < \pi\), show that the equation $$\operatorname { cosec } x = x ( \pi - x )$$ has exactly two real roots in the interval \(0 < x < \pi\).
  2. Show that the equation \(\operatorname { cosec } x = x ( \pi - x )\) can be written in the form \(x = \frac { 1 + x ^ { 2 } \sin x } { \pi \sin x }\).
  3. The two real roots of the equation \(\operatorname { cosec } x = x ( \pi - x )\) in the interval \(0 < x < \pi\) are denoted by \(\alpha\) and \(\beta\), where \(\alpha < \beta\).
    (a) Use the iterative formula $$x _ { n + 1 } = \frac { 1 + x _ { n } ^ { 2 } \sin x _ { n } } { \pi \sin x _ { n } }$$ to find \(\alpha\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
    (b) Deduce the value of \(\beta\) correct to 2 decimal places.
Question 9
View details
9
  1. Express \(\frac { 4 + 12 x + x ^ { 2 } } { ( 3 - x ) ( 1 + 2 x ) ^ { 2 } }\) in partial fractions.
  2. Hence obtain the expansion of \(\frac { 4 + 12 x + x ^ { 2 } } { ( 3 - x ) ( 1 + 2 x ) ^ { 2 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
Question 10
View details
10
\includegraphics[max width=\textwidth, alt={}, center]{b6bede75-3da4-4dda-9303-a5a692fc2572-3_556_1093_1596_523} The diagram shows the curve \(y = 10 e ^ { - \frac { 1 } { 2 } x } \sin 4 x\) for \(x \geqslant 0\). The stationary points are labelled \(T _ { 1 } , T _ { 2 }\), \(T _ { 3 } , \ldots\) as shown.
  1. Find the \(x\)-coordinates of \(T _ { 1 }\) and \(T _ { 2 }\), giving each \(x\)-coordinate correct to 3 decimal places.
  2. It is given that the \(x\)-coordinate of \(T _ { n }\) is greater than 25 . Find the least possible value of \(n\).