4 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 1 + \cos x }\), for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
P is the point on the curve with \(x\)-coordinate \(\frac { 1 } { 3 } \pi\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1d12cd0d-07b0-429c-ad3b-e3bccb0fae18-4_820_815_551_715}
\captionsetup{labelformat=empty}
\caption{Fig. 8}
\end{figure}
- Find the \(y\)-coordinate of P .
- Find \(\mathrm { f } ^ { \prime } ( x )\). Hence find the gradient of the curve at the point P .
- Show that the derivative of \(\frac { \sin x } { 1 + \cos x }\) is \(\frac { 1 } { 1 + \cos x }\). Hence find the exact area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 3 } \pi\).
- Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arccos \left( \frac { 1 } { x } - 1 \right)\). State the domain of this inverse function, and add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.