OCR MEI C3 (Core Mathematics 3)

Question 1
View details
1 Fig. 4 shows a cone with its axis vertical. The angle between the axis and the slant edge is \(45 ^ { \circ }\). Water is poured into the cone at a constant rate of \(5 \mathrm {~cm} ^ { 3 }\) per second. At time \(t\) seconds, the height of the water surface above the vertex O of the cone is \(h \mathrm {~cm}\), and the volume of water in the cone is \(V \mathrm {~cm} ^ { 3 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-1_295_403_542_871} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find \(V\) in terms of \(h\). Hence find the rate at which the height of water is increasing when the height is 10 cm .
[0pt] [You are given that the volume \(V\) of a cone of height \(h\) and radius \(r\) is \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\) ].
Question 2
View details
2 A spherical balloon of radius \(r \mathrm {~cm}\) has volume \(V \mathrm {~cm} ^ { 3 }\), where \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\). The balloon is inflated at a constant rate of \(10 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\). Find the rate of increase of \(r\) when \(r = 8\).
Question 3
View details
3 The driving force \(F\) newtons and velocity \(v \mathrm {~km} \mathrm {~s} ^ { - 1 }\) of a car at time \(t\) seconds are related by the equation \(F = \frac { 25 } { v }\).
  1. Find \(\frac { \mathrm { d } F } { \mathrm {~d} v }\).
  2. Find \(\frac { \mathrm { d } F } { \mathrm {~d} t }\) when \(v = 50\) and \(\frac { \mathrm { d } v } { \mathrm {~d} t } = 1.5\).
Question 4
View details
4 Water flows into a bowl at a constant rate of \(10 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\) (see Fig. 4). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-2_414_379_485_838} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} When the depth of water in the bowl is \(h \mathrm {~cm}\), the volume of water is \(V \mathrm {~cm} ^ { 3 }\), where \(V = \pi h ^ { 2 }\). Find the rate at which the depth is increasing at the instant in time when the depth is 5 cm .
Question 5
View details
5 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \cos ^ { 2 } x } , - \frac { 1 } { 2 } \pi < x < \frac { 1 } { 2 } \pi\), together with its asymptotes \(x = \frac { 1 } { 2 } \pi\) and \(x = - \frac { 1 } { 2 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-3_921_1398_538_414} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Use the quotient rule to show that the derivative of \(\frac { \sin x } { \cos x }\) is \(\frac { 1 } { \cos ^ { 2 } x }\).
  2. Find the area bounded by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 4 } \pi\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \mathrm { f } \left( x + \frac { 1 } { 4 } \pi \right)\).
  3. Verify that the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) cross at \(( 0,1 )\).
  4. State a sequence of two transformations such that the curve \(y = \mathrm { f } ( x )\) is mapped to the curve \(y = \mathrm { g } ( x )\). On the copy of Fig. 9, sketch the curve \(y = \mathrm { g } ( x )\), indicating clearly the coordinates of the minimum point and the equations of the asymptotes to the curve.
  5. Use your result from part (ii) to write down the area bounded by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = - \frac { 1 } { 4 } \pi\).
Question 6
View details
6 When the gas in a balloon is kept at a constant temperature, the pressure \(P\) in atmospheres and the volume \(V \mathrm {~m} ^ { 3 }\) are related by the equation $$P = \frac { k } { V } ,$$ where \(k\) is a constant. [This is known as Boyle's Law.]
When the volume is \(100 \mathrm {~m} ^ { 3 }\), the pressure is 5 atmospheres, and the volume is increasing at a rate of \(10 \mathrm {~m} ^ { 3 }\) per second.
  1. Show that \(k = 500\).
  2. Find \(\frac { \mathrm { d } P } { \mathrm {~d} V }\) in terms of \(V\).
  3. Find the rate at which the pressure is decreasing when \(V = 100\).
Question 7
View details
7 Fig. 4 shows a cone. The angle between the axis and the slant edge is \(30 ^ { \circ }\). Water is poured into the cone at a constant rate of \(2 \mathrm {~cm} ^ { 3 }\) per second. At time \(t\) seconds, the radius of the water surface is \(r \mathrm {~cm}\) and the volume of water in the cone is \(V \mathrm {~cm} ^ { 3 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-4_363_391_1447_887} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Write down the value of \(\frac { \mathrm { d } V } { \mathrm {~d} t }\).
  2. Show that \(V = \frac { \sqrt { 3 } } { 3 } \pi r ^ { 3 }\), and find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\).
    [0pt] [You may assume that the volume of a cone of height \(h\) and radius \(r\) is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).]
  3. Use the results of parts (i) and (ii) to find the value of \(\frac { \mathrm { d } r } { \mathrm {~d} t }\) when \(r = 2\).
Question 8
View details
8 Fig. 4 is a diagram of a garden pond. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-5_295_742_410_693} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} The volume \(V \mathrm {~m} ^ { 3 }\) of water in the pond when the depth is \(h\) metres is given by $$V = \frac { 1 } { 3 } \pi h ^ { 2 } ( 3 - h ) .$$
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} h }\). Water is poured into the pond at the rate of \(0.02 \mathrm {~m} ^ { 3 }\) per minute.
  2. Find the value of \(\frac { \mathrm { d } h } { \mathrm {~d} t }\) when \(h = 0.4\).